Population Forecasting in the Netherlands between the Two World Wars

Author(s):  
Henk A. de Gans
2020 ◽  
Author(s):  
Nico Keilman

Abstract We demonstrate how a probabilistic population forecast can be evaluated, when observations for the predicted variables become available. Statisticians have developed various scoring rules for that purpose, but there are hardly any applications in population forecasting literature. A scoring rule measures the distance between the probability distribution of the predicted variable, and the actual outcome. We use scoring rules that reward accuracy (the outcome is close to the expected value of the prediction) and sharpness (the predictive distribution has low variance, which makes it difficult to hit the target).We evaluate probabilistic population forecasts for France, the Netherlands, and Norway. For all three countries, we use results from the UPE-project ("Uncertain Population of Europe"). We inspect prediction intervals for population size in the period 2004-2019 and 3000 sample paths for population pyramids for the year 2010. For the Netherlands and for Norway, we compare the UPE-results with findings from the official probabilistic population forecast by Statistics Netherlands (2001-2019) and from a probabilistic forecast for Norway (1997-2019). All forecasts were computed using the cohort-component method and stochastically varying parameters for fertility, mortality and migration. We show that the UPE-forecasts for the Netherlands and for Norway performed better than the other forecasts for these two countries. The error in the jump-off population caused a bad score for the French forecast.We evaluate the 3000 UPE-simulations of the age and sex composition predicted for the year 2010. When normalized for population numbers in each age-sex category, the predictions for the Netherlands received the best scores, except for the oldest old. The age pattern for the Norwegian score reflects the under-prediction of immigration after the enlargement of the European Union in 2005.


2020 ◽  
Author(s):  
Nico Keilman

Abstract Statisticians have developed scoring rules for evaluating probabilistic forecasts against observations. However, there are very few applications in the literature on population forecasting. A scoring rule measures the distance between the predictive distribution and its outcome. We review scoring rules that reward accuracy (the outcome is close to the expectation of the distribution) and sharpness (the distribution has low variance, which makes it difficult to hit the target). We evaluate probabilistic population forecasts for France, the Netherlands, and Norway. Forecasts for total population size for the Netherlands and for Norway performed quite well. The error in the jump-off population caused a bad score for the French forecast. We evaluate the age and sex composition predicted for the year 2010. The predictions for the Netherlands received the best scores, except for the oldest old. The age pattern for the Norwegian score reflects the under-prediction of immigration after the enlargement of the European Union in 2005. JEL codes: C15, C44, J11,


1996 ◽  
Vol 26 (12) ◽  
pp. 1355-1363 ◽  
Author(s):  
M. M. van der Klauw ◽  
J. H. P. Wilson ◽  
B. H. Ch. Stricker

1999 ◽  
Vol 4 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Peter van Drunen ◽  
Pieter J. van Strien
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document