Design, Modelling, and Control Strategies of a Three Degrees-of-Freedom VR Spherical Motor Part II: Dynamic Modeling and Control

Author(s):  
Kok-Meng Lee
1996 ◽  
Vol 118 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Kok-Meng Lee ◽  
Ronald B. Roth ◽  
Zhi Zhou

Examination of existing joint designs for robot wrist applications has indicated that a spherical wrist motor offers a major performance advantage in trajectory planning and control as compared to the popular three-consecutive-rotational joint wrist. The tradeoff, however, is the complexity of the dynamic modeling and control. This paper presents the dynamic modeling and the control strategy of a three degree-of-freedom (DOF) variable-reluctance (VR) spherical motor which presents some attractive possibilities by combining pitch, roll, and yaw motion in a single joint. The spherical motor dynamics consist of the rotor dynamics and a torque model. The torque model is described as a function of coil excitations and a permeance model in terms of the relative position between the rotor and the stator. Both the forward dynamics which determine the rotor motion as a result of activating the electromagnetic coils and the inverse model which determines the coil excitations required to generate the desired torque are derived in this paper. The solution to the forward dynamics of the spherical motor is unique, but the inverse model has many solutions and therefore an optimization is desired. Experimental results verifying the dynamic model are presented. The control of a VR spherical motor consists of two parts; namely, the control of the rotor dynamics with the actuating torque as system input, and the determination of the optimal electrical inputs for a specified actuating torque. The simulation results and implementation issues in determining the optimal control input vectors are addressed. It is expected that the resulting analysis will serve as a basis for dynamic modeling, motion control development, and design optimization of the VR spherical motor.


Author(s):  
Geovani Bondo ◽  
Chengzhi Yuan ◽  
Chang Duan

Abstract This paper studies the modeling and control of a spherical inverted pendulum (SIP). The SIP is deemed to be a reasonable model for rocket-propelled body and is often used to test advanced control strategies. The mathematic model is derived based on a Quanser two degrees-of-freedom inverted pendulum commercial product. The pendulum is mounted on a five-bar mechanism that is actuated by two rotary servo base units. Unlike conventional assumption that the two motors are allowed to rotate simultaneously, we assume a more challenging scenario that at one time only one motor is working. The system is hence modeled as a switched system as two motors have to be switched in order to balance the pendulum at its unstable equilibrium. Switched controllers, together with a switching strategy are developed to ensure the stability of the system and satisfy a disturbance attenuation performance index. Simulation results are presented to show the effectiveness of the proposed method.


2020 ◽  
Vol 276 ◽  
pp. 115537 ◽  
Author(s):  
Muhammad Imran ◽  
Roberto Pili ◽  
Muhammad Usman ◽  
Fredrik Haglind

2020 ◽  
Vol 10 (24) ◽  
pp. 9067
Author(s):  
Deng Lin ◽  
Giovanni Mottola ◽  
Marco Carricato ◽  
Xiaoling Jiang

Cable-driven parallel robots can provide interesting advantages over conventional robots with rigid links; in particular, robots with a cable-suspended architecture can have very large workspaces. Recent research has shown that dynamic trajectories allow the robot to further increase its workspace by taking advantage of inertial effects. In our work, we consider a three-degrees-of-freedom parallel robot suspended by three cables, with a point-mass end-effector. This model was considered in previous works to analyze the conditions for dynamical feasibility of a trajectory. Here, we enhance the robot’s capabilities by using it as a sling, that is, by throwing a mass at a suitable time. The mass is carried at the end-effector by a gripper, which releases the mass so that it can reach a given target point. Mathematical models are presented that provide guidelines for planning the trajectory. Moreover, results are shown from simulations that include the effect of cable elasticity. Finally, suggestions are offered regarding how such a trajectory can be optimized.


Author(s):  
Scott G. Olsen ◽  
Gary M. Bone

The low-level modeling and control of mobile robots that interact forcibly with their environment, such as robotic excavation machinery, is a challenging problem that has not been adequately addressed in prior research. This paper investigates the low-level modeling of robotic bulldozing. The proposed model characterizes the three primary degrees-of-freedom (DOF) of the bulldozer, the blade position, the material accumulation on the blade, and the material distribution in the environment. It includes discrete operation modes contained within a hybrid dynamic model framework. The dynamics of the individual modes are represented by a set of linear and nonlinear differential equations. An instrumented scaled-down bulldozer and environment are developed to emulate the full scale operation. Model parameter estimation and validation are completed using experimental data from this system. The model is refined based on a global sensitivity analysis. The refined model is suitable for simulation and design of robotic bulldozing control strategies.


Sign in / Sign up

Export Citation Format

Share Document