robot wrist
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kangkang Li ◽  
Pu Xing ◽  
Xu-Kun Zhang ◽  
Qing-Guo Xia

Abstract The stiffness requirements of robot wrists vary with processes during automatic assembling-clamping of robots. The precision of robots moving workpieces to operating positions in the process of rigid localization is achieved if robot wrists equip with a large stiffness. The pose errors of workpieces in the process of compliant assembling-clamping can easily be compensated if robot wrists with a low stiffness is utilized. The present compliant wrist can not meet the stiffness requirements of different processes. A robot wrist with a large stiffness variation is proposed and its mechanisms of rigid localization and compliant assembling-clamping are studied. The pose models of wrists caused by deformations are established. The influences of wrist stiffness on the deformation of itself are researched. The mechanism of modulating wrist stiffness during compliant assembling-clamping is revealed. A structure of 3-DOF (degrees of freedom) robot wrist with a stiffness variation is proposed. The wrist stiffness is changed by modulating the pretension. The influences of pretensions and geometrical parameters on the variable-stiffness characteristics and the stiffness distribution of a wrist are researched. Finally, the experiments are carried out to verify the feasibility of the wrists finishing assembling-clamping operations by modulating the stiffness.


Author(s):  
Paul H. Milenkovic

Abstract Adjusting the displacement path of a serial robot encountering the wrist singularity to pass either through the singularity or around it mitigates its adverse effects. Both such path adjustments are commonly called singularity avoidance and are applied here to either a spherical or an offset wrist. These adjustments avoid high joint rates that can occur at singularity encounter. A recent through-the singularity method limits joint rates and accelerations in the robot with either a spherical or offset wrist when conducting a constant rate of traversal of the tool manipulated by the robot. A kinematic model adding multiple virtual joints allows a modified high-order path-following algorithm to maintain accurate tool position while achieving an optimal level of tool deviation in orientation. Whereas a path reversal resulting from a turning-point type singularity had been revealed for an offset wrist over a finite range of close-approach, these conditions are met when connecting the isolated path segments. Procedures are developed here with this capability for an around-the-singularity path. Choosing between the through and around-singularity alternatives offers the overall optimum.


2021 ◽  
Vol 11 (6) ◽  
pp. 2669
Author(s):  
Yuan-Chih Peng ◽  
Shuyang Chen ◽  
Devavrat Jivani ◽  
John Wason ◽  
William Lawler ◽  
...  

This paper presents a robotic assembly methodology for the manufacturing of large segmented composite structures. The approach addresses three key steps in the assembly process: panel localization and pick-up, panel transport, and panel placement. Multiple stationary and robot-mounted cameras provide information for localization and alignment. A robot wrist-mounted force/torque sensor enables gentle but secure panel pick-up and placement. Human-assisted path planning ensures reliable collision-free motion of the robot with a large load in a tight space. A finite state machine governs the process flow and user interface. It allows process interruption and return to the previous known state in case of error condition or when secondary operations are needed. For performance verification, a high resolution motion capture system provides the ground truth reference. An experimental testbed integrating an industrial robot, vision and force sensors, and representative laminated composite panels demonstrates the feasibility of the proposed assembly process. Experimental results show sub-millimeter placement accuracy with shorter cycle times, lower contact force, and reduced panel oscillation than manual operations. This work demonstrates the versatility of sensor guided robotic assembly operation in a complex end-to-end tasks using the open source Robot Operating System (ROS) software framework.


Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Kevin Castelli ◽  
Ahmed Magdy Ahmed Zaki ◽  
Yevheniy Dmytriyev ◽  
Marco Carnevale ◽  
Hermes Giberti

Manufacturing processes in the shoe industry are still characterized to a large extent by human labour, especially in small and medium craft enterprises. Even when machinery is adopted to support manufacturing operations, in most cases an operator has to supervise or carry out the task. On the other hand, craft footwear industries are called to respond to continuous challenges to face the globalization effects, so that a rapid adaptability to customer needs is required. The industry 4.0 paradigms, which are taking place in the industrial environments, represent an excellent opportunity to improve the efficiency and quality of production, and a way to face international competitors. This paper analyses and proposes a robotic cell to automatize the process of glue deposition on shoe upper, which exploits a new means of depositing the glue compared to State-of-Art applications. While the latter mainly adopt glue gun spraying systems or pneumatic syringes, the proposed robotic cell is based on an extrusion system for the deposition of molten material originally in the form of a filament, similar to all extent to those adopted for Fused Deposition Modeling (FDM). Two cell solutions are designed and tested. In the former the extruder is the robot end effector and the shoe upper is grounded to the cell frame. In the second, being the reciprocal, the shoe last is clamped to the robot wrist and the extruder is fixed to the cell frame. The peculiarities of the two solutions are pointed out and compared in terms of cell layout, hardware, programming software and possibility to develop collaborative applications. A self developed slicing software allows designing the trajectories for glue deposition based on the CAD model of the shoe upper, also allowing driving the inclination of the extruder nozzle with respect to the vectors normal to the upper surface. Both the proposed cell layouts permit to achieve good quality and production times. The solution with the mobile extruder is able to deposit glue at highest end-effector speed (up to 200 mm/s). On the other hand, the solution with the mobile shoe upper and fixed extruder seems to be more appropriate to enhance collaborative applications.


2020 ◽  
Vol 6 ◽  
pp. e304
Author(s):  
Morten Lind

This paper presents a real-time joint trajectory interpolation system for the purpose of frequency scaling the low cycle time of a robot controller, allowing a Python application to real-time control the robot at a moderate cycle time. Interpolation is based on quintic Hermite piece-wise splines. The splines are calculated in real-time, in a piecewise manner between the high-level, long cycle time trajectory points, while sampling of these splines at an appropriate, shorter cycle time for the real-time requirement of the lower-level system. The principle is usable in general, and the specific implementation presented is for control of the Panda robot from Franka Emika. Tracking delay analysis is presented based on a cosine trajectory. A simple test application has been implemented, demonstrating real-time feeding of a pre-calculated trajectory for cutting with a knife. Estimated forces on the robot wrist are recorded during cutting and presented in the paper.


Robotica ◽  
2020 ◽  
pp. 1-14
Author(s):  
M. Shahabi ◽  
H. Ghariblu ◽  
M. Beschi ◽  
N. Pedrocchi

SUMMARY The V-groove joint of thick wall intersecting pipes must be filled by multi-layer weld. The welding path of intersecting pipes is complicated, and hence multi-layer welds increase the complexity of the problem. This paper proposes a methodology for path planning of multi-layer weld of thick wall intersecting pipes. The methodology is based on measuring the electrode pose located in both side and front views of intersecting pipes. In order to compensate for the path deviation around the pipe circumference, the measured values are used to interpolate the path of each pass between two views. The methodology has been applied in a case study. Simulation results approve that multi-layer weld appropriately fills the V-groove joint space around the pipe circumference. In addition, collision avoidance between welding torch and pipes is considered by introducing a safety ring. While the robot wrist moves inside the safety ring, no collision occurs. Simulation results show the robustness of the proposed path planning method, introduced for collision avoidance.


Author(s):  
Dmitry Popov ◽  
Valeria Skvortsova ◽  
Alexandr Klimchik ◽  
Anatol Pashkevich
Keyword(s):  

Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
Divya Shah ◽  
Yuanqing Wu ◽  
Alessandro Scalzo ◽  
Giorgio Metta ◽  
Alberto Parmiggiani

This article provides a detailed comparative analysis of five orientational, two degrees of freedom (DOF) mechanisms whose envisioned application is the wrist of the iCub humanoid robot. Firstly, the current iCub mk.2 wrist implementation is presented, and the desired design objectives are proposed. Prominent architectures from literature such as the spherical five-bar linkage and spherical six-bar linkage, the OmniWrist-III and the Quaternion joint mechanisms are modeled and analyzed for the said application. Finally, a detailed comparison of their workspace features is presented. The Quaternion joint mechanism emerges as a promising candidate from this study.


Sign in / Sign up

Export Citation Format

Share Document