Grain Boundary Analysis of Silicon Nitride Materials

Author(s):  
Tsuneo Mishima ◽  
Rieko Tanaka ◽  
Shoji Kohsaka ◽  
Kazunori Koga
Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1978 ◽  
Vol 50 (2) ◽  
pp. 703-709 ◽  
Author(s):  
Th. Karakostas ◽  
G. Nouet ◽  
G. L. Bleris ◽  
S. Hagege ◽  
P. Delavignette

1992 ◽  
Vol 287 ◽  
Author(s):  
T.S. Yen ◽  
W.Y. Sun

ABSTRACTAdditions and revisions to several of the most important phase diagrams and phase behavior diagrams in the silicon nitride field are reviewed in this work, with emphasis on the Y-Si-A1-O-N system. This information is further used to make observations on the promising silicon nitride systems containing either highly refractory grain boundary phases or compatible matrix phases of desirable properties. Examples are provided to illustrate the advantage of such a basic approach to materials design. Hardness, toughness, strength at room temperature and elevated temperature and even sinterability can all be improved by adopting such an approach.


ChemInform ◽  
2010 ◽  
Vol 30 (13) ◽  
pp. no-no
Author(s):  
Hui Gu ◽  
Xiaoqing Pan ◽  
Rowland M. Cannon ◽  
Manfred Ruehle

2000 ◽  
Vol 15 (7) ◽  
pp. 1551-1555 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Yuichi Ikuhara ◽  
Taketo Sakuma

The thickness distribution of grain-boundary films during the superplastic deformation of fine-grained β–silicon nitride was investigated by high-resolution electron microscopy. In particular, grain-boundary thickness was considered with respect to the stress axis in two orientations; namely, parallel and perpendicular to the direction of applied stress. The results showed that the thickness distribution in boundaries perpendicular to the direction of applied stress was unimodal, whereas in parallel boundaries it was bimodal. Moreover, it was found that the majority of film-free boundaries were parallel to the direction of applied stress in the extremely deformed sample. The variation in spacing reflects distribution of stresses within the material due to irregular shape of the grains and the existence of percolating load-bearing paths through the microstructure.


1990 ◽  
Vol 189 ◽  
Author(s):  
T. N. Tiegs ◽  
J. O. Kiggans ◽  
H. D. Kimrey

ABSTRACTMicrowave sintering of Si3N4—based materials showed improved densification as compared to samples heated conventionally under similar conditions. Accelerated nitridation of Si in the microwave furnace to produce Si3N4 was also observed. Dense Si3N4, annealed by microwave heating, exhibited enhanced grain growth; however preferential coupling of the microwave power to the grain—boundary phases in the present experiments resulted in their degradation.


Sign in / Sign up

Export Citation Format

Share Document