Observed Mass Loss from Central Stars of Planetary Nebulae

1993 ◽  
pp. 57-64 ◽  
Author(s):  
M. Perinotto
1997 ◽  
Vol 180 ◽  
pp. 125-125
Author(s):  
P. Patriarchi ◽  
M. Perinotto

The variability of P Cygni profiles is important because of its connection with the mechanism of wind production and with the behaviour of the associated mass loss rates.


1989 ◽  
Vol 131 ◽  
pp. 463-472 ◽  
Author(s):  
Detlef Schönberner

Our understanding of the evolution of Central Stars of Planetary Nebulae (CPN) has made considerable progress during the last years. This was possible since consistent computations through the asymptotic giant branch (AGB), with thermal pulses and (in some cases) mass loss taken into account, became available (Schönberner, 1979, 1983; Kovetz and Harpaz, 1981; Harpaz and Kovetz, 1981; Iben, 1982, 1984; Wood and Faulkner, 1986). It turned out that the evolution depends very sensitively on the inital conditions on the AGB. More precisely, the evolution of an AGB remnant is a function of the phase of the thermal-pulse cycle during which this remnant was created on the tip of the AGB by the planetary-nebula (PN) formation process (Iben, 1984, 1987). This was first shown by Schönberner (1979), and then fully explored by Iben (1984). In short, two major modes of PAGB evolution to the white dwarf stage are possible, according to the two main phases of a thermally pulsing AGB star: the hydrogen-burning or helium-burning mode. If, for instance, the PN formation, i.e. the removal of the stellar envelope by mass loss, happens during a luminosity peak that follows a thermal pulse of the helium-burning shell, the remnant leaves the AGB while still burning helium as the main energy supplier (Härm and Schwarzschild, 1975). On the other hand, PN formation may also occur during the quiescent hydrogen-burning phase on the AGB, and the remnant continues then to burn mainly hydrogen on its way to becoming a white dwarf.


2003 ◽  
Vol 209 ◽  
pp. 237-238 ◽  
Author(s):  
G. Handler

A new class of variable star is proposed. These are variable central stars of young Planetary Nebulae exhibiting roughly sinusoidal (semi)regular photometric and/or radial velocity variations with time scales of several hours. Fourteen of these objects have been identified. Their temperatures are between 25000 and 50000 K and most show hydrogen-rich spectra. The most likely reason for the variability is stellar pulsation. Another possibility would be variable stellar mass loss, but in that case the mechansism causing it must be different from that operating in massive O stars. We speculate that it actually is the stellar pulsations which cause mass loss mdulations.


2003 ◽  
Vol 209 ◽  
pp. 447-450
Author(s):  
Romano L.M. Corradi

An improved database of ionized haloes around PNe has been built by adding the results of an extensive observational campaign to the data available in the literature. The new observations allowed us to discovered new haloes around CN 1-5, IC 2165, IC 2553, NGC 2792, NGC 2867, NGC 3918, NGC 5979, NGC 6578, PB 4, and possibly IC 1747.The global sample consists of 29 AGB haloes, that are believed to still contain information about the mass loss from the AGB progenitor star. Six of these haloes show a highly asymmetrical geometry that is tentatively ascribed to the interaction of the stellar outflow with the ISM.Another 5 PNe show candidate recombination haloes. These are produced by the recombination front that sets up when the stellar luminosity drops in its post-AGB evolution. The resulting, limb-brightened shell resembles a real AGB halo, but is not related to AGB any mass loss event.Double AGB haloes are found in at least 4 PNe.For 11 PNe, deep images are available, but no halo is found to a level of ≲ 10-3 the peak surface brightness of the inner nebula.These observations show us that ionized haloes are a common morphological component of PNe, being found in 70% of elliptical PNe for which adequately deep images exist. Statistical properties of the haloes are briefly discussed. Using the kinematical ages of the haloes and inner nebulae, we conclude that most of the PNe with detected haloes have hydrogen burning central stars.


1993 ◽  
Vol 260 (2) ◽  
pp. 401-407 ◽  
Author(s):  
J. A. de Freitas Pacheco ◽  
R. D. D. Costa ◽  
F. X. de Araujo ◽  
D. Petrini

2003 ◽  
Vol 209 ◽  
pp. 541-542 ◽  
Author(s):  
Aubrie McLean ◽  
Martín A. Guerrero ◽  
Robert A. Gruendl ◽  
You-Hua Chu

The origin of the wide range of morphologies observed in planetary nebulae (PNe) is not well established. The influence of a binary companion of the central star can naturally explain this variety of morphologies, but very few PNe have known binary central stars. The evolution of the binary system with mass loss may result in the displacement of the central star from the nebular center. The large sample of PNe observed by HST is being used to search for de-centered central stars. Preliminary results indicate that the occurrence of de-centered central stars is widespread among all morphological types of PNe.


1999 ◽  
Vol 193 ◽  
pp. 376-377
Author(s):  
Patrick W. Morris ◽  
L.B.F.M. Waters ◽  
Douwe A. Beintema

The timing of PNe formation around low-mass WC stars is unsettled with respect to pulsations early in the post-AGB phase, or later thermal pulses (e.g., Tylenda & Gorny 1997). The chemistry of the dust in the nebulae can be used to trace the mass-loss history. Using ISO-SWS spectroscopy, the PNe BD+30°3639 [WC9] and He2–113 [WC11] have been identified by Waters et al. (1998) to exhibit emission from C-rich dust (PAHs) in the surrounding envelopes at λ 15 μm, while O-abundant silicate features are present at longer wavelengths. Figure 1 shows the PAH features, which include additional WCPNe observations to extend the range of stellar spectral subtypes.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


Sign in / Sign up

Export Citation Format

Share Document