Analysis of Spatial Variability of River Network Morphology, Flow and Potential Energy

Author(s):  
S. Elsheikh ◽  
R. Rosso ◽  
P. La Barbera
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Lin ◽  
Ming Pan ◽  
Eric F. Wood ◽  
Dai Yamazaki ◽  
George H. Allen

AbstractSpatial variability of river network drainage density (Dd) is a key feature of river systems, yet few existing global hydrography datasets have properly accounted for it. Here, we present a new vector-based global hydrography that reasonably estimates the spatial variability of Dd worldwide. It is built by delineating channels from the latest 90-m Multi-Error-Removed Improved Terrain (MERIT) digital elevation model and flow direction/accumulation. A machine learning approach is developed to estimate Dd based on the global watershed-level climatic, topographic, hydrologic, and geologic conditions, where relationships between hydroclimate factors and Dd are trained using the high-quality National Hydrography Dataset Plus (NHDPlusV2) data. By benchmarking our dataset against HydroSHEDS and several regional hydrography datasets, we show the new river flowlines are in much better agreement with Landsat-derived centerlines, and improved Dd patterns of river networks (totaling ~75 million kilometers in length) are obtained. Basins and estimates of intermittent stream fraction are also delineated to support water resources management. This new dataset (MERIT Hydro–Vector) should enable full global modeling of river system processes at fine spatial resolutions.


2009 ◽  
Vol 52 (11) ◽  
pp. 1724-1731 ◽  
Author(s):  
Li Zhang ◽  
BinXiang Dai ◽  
GuangQian Wang ◽  
TieJian Li ◽  
Hao Wang

2016 ◽  
Vol 29 (5) ◽  
pp. 1899-1917 ◽  
Author(s):  
Vincent Y. S. Cheng ◽  
George B. Arhonditsis ◽  
David M. L. Sills ◽  
William A. Gough ◽  
Heather Auld

Abstract Destruction and fatalities from recent tornado outbreaks in North America have raised considerable concerns regarding their climatic and geographic variability. However, regional characterization of tornado activity in relation to large-scale climatic processes remains highly uncertain. Here, a novel Bayesian hierarchical framework is developed for elucidating the spatiotemporal variability of the factors underlying tornado occurrence in North America. It is demonstrated that regional variability of tornado activity can be characterized using a hierarchical parameterization of convective available potential energy, storm relative helicity, and vertical wind shear quantities. It is shown that the spatial variability of tornado occurrence during the warm summer season can be explained by convective available potential energy and storm relative helicity alone, while vertical wind shear is clearly better at capturing the spatial variability of the cool season tornado activity. The results suggest that the Bayesian hierarchical modeling approach is effective for understanding the regional tornadic environment and in forming the basis for establishing tornado prognostic tools in North America.


Author(s):  
J. A. N. Zasadzinski ◽  
R. K. Prud'homme

The rheological and mechanical properties of crosslinked polymer gels arise from the structure of the gel network. In turn, the structure of the gel network results from: thermodynamically determined interactions between the polymer chain segments, the interactions of the crosslinking metal ion with the polymer, and the deformation history of the network. Interpretations of mechanical and rheological measurements on polymer gels invariably begin with a conceptual model of,the microstructure of the gel network derived from polymer kinetic theory. In the present work, we use freeze-etch replication TEM to image the polymer network morphology of titanium crosslinked hydroxypropyl guars in an attempt to directly relate macroscopic phenomena with network structure.


Author(s):  
Dunstan Brown ◽  
Andrew Hippisley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document