Computations of Complex Turbulent Flows Using the Commercial Code Fluent

Author(s):  
S.-E. Kim ◽  
D. Choudhury ◽  
B. Patel
2013 ◽  
Vol 284-287 ◽  
pp. 888-893 ◽  
Author(s):  
Ho Keun Kang ◽  
Soo Whan Ahn ◽  
Myung Sung Lee

Numerical predictions of characteristics of turbulent flows through a square duct (30 30 mm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors by using CFX 11.0 commercial code. The validity of the numerical results is confirmed by measurement. Reynolds numbers are varied between 8,900 and 29,000. A rib height-to-channel hydraulic diameter (e/Dh) of 0.067 and a length-to hydraulic diameter (L/Dh) of 30 are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 28mm, length of 900mm and 2.5 turns. Each wall of the square channel is composed of the isolated aluminum section. The present study demonstrates that the twisted tape with interrupted ribs provides a greater overall heat transfer performance over the twisted tape with no ribs in the square duct.


2020 ◽  
Vol 38 (4) ◽  
pp. 775-784
Author(s):  
Anwer F. Faraj ◽  
Itimad D.J. Azzawi ◽  
Samir G. Yahya

A computational fluid dynamics (CFD) study was conducted to analyse the flow structure and the effect of varying the coil pitch on the coil friction factor and wall shear stress, through utilising different models’ configurations. Three coils were tested, all of them having the same diameter and coil diameter: 0.005m and 0.04m respectively. Pitch variations began with 0.01, 0.05, 0.25 m for the first, second and third model respectively. Two turbulence models, STD(k-ϵ) and STD(k-w), were utilised in this simulation in order to determine the turbulence model which could capture most of the flow characteristics. A comparison was made between the STD(k-ϵ) and STD(k-w) models in order to analyse the pros and cons of each model. The results were validated with Ito’s equation for turbulent flow and compared with Filonenko’s equation for a straight pipe. The governing equations were discretized using finite volumes method and the SIMPLE algorithm was used to solve the equations iteratively. All the models were simulated using the ANSYS Fluent solver CFD commercial code. The results showed that in turbulent flows, Dean number had a stronger effect on reducing coil friction factor than the increment in pitch dimension.


1997 ◽  
Vol 28 (4-6) ◽  
pp. 277-288
Author(s):  
Leonid I. Zaichik ◽  
Bulat I. Nigmatulin ◽  
Vladimir M. Alipchenkov ◽  
V. A. Belov

Sign in / Sign up

Export Citation Format

Share Document