Airborne Water Vapor Differential Absorption Lidar Studies of the Convective Boundary Layer

Author(s):  
C. Kiemle ◽  
G. Ehret ◽  
K. J. Davis ◽  
D. H. Lenschow ◽  
S. P. Oncley
2017 ◽  
Vol 37 (2) ◽  
pp. 0201003
Author(s):  
洪光烈 Hong Guanglie ◽  
李嘉唐 Li Jiatang ◽  
孔 伟 Kong Wei ◽  
葛 烨 Ge Ye ◽  
舒 嵘 Shu Rong

2016 ◽  
Author(s):  
F. Späth ◽  
A. Behrendt ◽  
S. K. Muppa ◽  
S. Metzendorf ◽  
A. Riede ◽  
...  

Abstract. The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) determines fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and spatial resolution of up to a few tens of meters. We present three case studies which show that this high resolution combined with 2- and 3-dimensional scans allows for new insights in the 3-dimensional structure of the water vapor field in the atmospheric boundary layer (ABL). In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HOPE was part of the project High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2). Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers and its impact on the formation of clouds at the ABL top. The uncertainty of the measured data was assessed by extending a technique, which was formerly applied to vertical time series, to scanning data. Typically, even during daytime, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m−3 (or < 6 %) within the ABL, so that now the performance of an RHI scan from the surface to an elevation angle of 90 degrees becomes possible within 10 min. In summer 2014, the UHOH DIAL participated in the Surface-Atmosphere-Boundary-Layer-Exchange (SABLE) campaign in south-western Germany. Volume scans show the water vapor field in three dimensions. In this case, multiple humidity layers were present. Differences in their heights in different directions can be attributed to different surface elevation. With low elevation scans in the surface layer, the humidity profiles and gradients related to different land use and surface stabilities were also revealed.


2016 ◽  
Vol 9 (4) ◽  
pp. 1701-1720 ◽  
Author(s):  
Florian Späth ◽  
Andreas Behrendt ◽  
Shravan Kumar Muppa ◽  
Simon Metzendorf ◽  
Andrea Riede ◽  
...  

Abstract. High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land–atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range–height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m−3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer stabilities.


Sign in / Sign up

Export Citation Format

Share Document