differential absorption
Recently Published Documents


TOTAL DOCUMENTS

980
(FIVE YEARS 124)

H-INDEX

48
(FIVE YEARS 5)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 109
Author(s):  
Chengzhi Xiang ◽  
Ailin Liang

In the CO2 differential absorption lidar (DIAL) system, signals are simultaneously collected through analog detection (AD) and photon counting (PC). These two kinds of signals have their own characteristics. Therefore, a combination of AD and PC signals is of great importance to improve the detection capability (detection range and accuracy) of CO2-DIAL. The traditional signal splicing algorithm cannot meet the accuracy requirements of CO2 inversion due to unreasonable data fitting. In this paper, a piecewise least square splicing algorithm is developed to make signal splicing more flexible and efficient. First, the lidar signal is segmented, and according to the characteristics of each signal, the best fitting parameters are obtained by using the least square fitting with different steps. Then, all the segmented and fitted signals are integrated to realize the effective splicing of the near-field AD signal and the far-field PC signal. A weight gradient strategy is also adopted in signal splicing, and the weights of the AD and PC signals in the spliced signal change with the height. The splicing effect of the improved algorithm is evaluated by the measured signal, which are obtained in Wuhan, China, and the splice of the AD and PC signals in the range of 800–1500 m are completed. Compared with the traditional method, the evaluation parameter R2 and the residual sum of squares of the spliced signal are greatly improved. The linear relationship between the AD and PC signals is improved, and the fitting R2 of differential absorption optical depth reaches 0.909, indicating that the improved signal splicing algorithm can well splice the near-field AD signal and the far-field PC signal.


2021 ◽  
Author(s):  
Oleg A. Romanovskii ◽  
Sergey A. Sadovnikov ◽  
Semyon V. Yakovlev ◽  
Dmitry A. Tuzhilkin ◽  
Ol'ga V. Kharchenko ◽  
...  

2021 ◽  
Vol 88 (6) ◽  
pp. 942-947
Author(s):  
A. P. Antonyan ◽  
N. H. Petrosyan ◽  
P. O. Vardevanyan

The comparative study on interaction of bisbenzimidazole compound Hoechst 33258 and thiazine dye methylene blue (MB) with bovine serum albumin (BSA) was carried out by spectroscopic methods. Denaturation curves as well as absorption spectra and differential absorption spectra of protein-ligand complexes were obtained. Denaturation temperature of albumin complexes of BSA with Hoechst 33258 was shown to decrease with the growth of concentration ratio of ligand/protein, while for MB, vice versa, denaturation temperature increases. Changes in absorption spectra and differential absorption spectra of the complexes of ligands with albumin were revealed, which result from the binding of these DNA-specific ligands to protein. It is supposed that at the interaction of Hoechst 33258 with BSA some loosening of protein compact structure occurs due to the partial loss of helicity of α-structures, while for MB an increase of the protein compact structure takes place.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1521
Author(s):  
Catherine Gaffard ◽  
Zhihong Li ◽  
Dawn Harrison ◽  
Raisa Lehtinen ◽  
Reijo Roininen

For a one-month period in summer 2020, a prototype Vaisala broadband differential absorption lidar (BB-DIAL) was deployed at a Met Office research site. It was compared with in-situ observations of humidity (93 radiosonde ascents and 27 of uncrewed aerial vehicle flights) and the Met Office 1.5 km resolution numerical weather prediction (NWP) model: UK Variable resolution model (UKV). The BB-DIAL was able to collect data up to the cloud base, in all-weather situations including rain, when it was possible to reach 3 km. The average maximum height was 1300 m, with 75% of the data reaching 1000 m and 35% extending to 1500 m. Compared with radiosondes, the standard deviation for the water vapour is between 5% and 10%. The comparison with the UKV is very encouraging, with a correlation of 0.90. The error against the radiosonde is smaller than against the UKV, which is encouraging for assimilation the BB-DIAL data in UKV. Some data quality issues, such as an increase in error and variable bias in the region of overlap between the far field and close field, spurious oscillations and an unrealistic dry layer above fog are identified. Despite these issues, the overall results from this assessment are promising in terms of potential benefit, instrument reliability and capturing significant humidity changes in the boundary layer.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022034
Author(s):  
E E Popov ◽  
A A Sergeev ◽  
A P Pogoda ◽  
V M Petrov ◽  
A S Boreysho

Abstract We demonstrate electro-optic Q-switched solid state laser with Cr:LiSAF active medium. A single 50 ns pulse with 14 mJ of output energy is demonstrated. Simultaneous generation of several peaks with a step of 1.4 nm within the spectrum envelope with a full width at half maximum of 10.3 nm is demonstrated. For an electro-optic Q-switched mode a Pockels cell is used. Demonstrated laser can be used in differential absorption lidar systems.


2021 ◽  
Vol 14 (10) ◽  
pp. 6675-6693
Author(s):  
Jonas Hamperl ◽  
Clément Capitaine ◽  
Jean-Baptiste Dherbecourt ◽  
Myriam Raybaut ◽  
Patrick Chazette ◽  
...  

Abstract. Laser active remote sensing of tropospheric water vapor is a promising technology to complement passive observational means in order to enhance our understanding of processes governing the global hydrological cycle. In such a context, we investigate the potential of monitoring both water vapor H216O and its isotopologue HD16O using a differential absorption lidar (DIAL) allowing for ground-based remote measurements at high spatio-temporal resolution (150 m and 10 min) in the lower troposphere. This paper presents a sensitivity analysis and an error budget for a DIAL system under development which will operate in the 2 µm spectral region. Using a performance simulator, the sensitivity of the DIAL-retrieved mixing ratios to instrument-specific and environmental parameters is investigated. This numerical study uses different atmospheric conditions ranging from tropical to polar latitudes with realistic aerosol loads. Our simulations show that the measurement of the main isotopologue H216O is possible over the first 1.5 km of atmosphere with a relative precision in the water vapor mixing ratio of <1 % in a mid-latitude or tropical environment. For the measurement of HD16O mixing ratios under the same conditions, relative precision is found to be slightly lower but still sufficient for the retrieval of range-resolved isotopic ratios with precisions in δD of a few per mil. We also show that expected precisions vary by an order of magnitude between tropical and polar conditions, the latter giving rise to poorer sensitivity due to low water vapor content and low aerosol load. Such values have been obtained for a commercial InGaAs PIN photodiode, as well as for temporal and line-of-sight resolutions of 10 min and 150 m, respectively. Additionally, using vertical isotopologue profiles derived from a previous field campaign, precision estimates for the HD16O isotopic abundance are provided for that specific case.


2021 ◽  
Vol 14 (10) ◽  
pp. 6601-6617
Author(s):  
Qin Wang ◽  
Farhan Mustafa ◽  
Lingbing Bu ◽  
Shouzheng Zhu ◽  
Jiqiao Liu ◽  
...  

Abstract. Accurate monitoring of atmospheric carbon dioxide (CO2) and its distribution is of great significance for studying the carbon cycle and predicting future climate change. Compared to the ground observational sites, the airborne observations cover a wider area and simultaneously observe a variety of surface types, which helps with effectively monitoring the distribution of CO2 sources and sinks. In this work, an airborne experiment was carried out in March 2019 over the Shanhaiguan area, China (39–41∘ N, 119–121∘ E). An integrated path differential absorption (IPDA) light detection and ranging (lidar) system and a commercial instrument, the ultraportable greenhouse gas analyser (UGGA), were installed on an aircraft to observe the CO2 distribution over various surface types. The pulse integration method (PIM) algorithm was used to calculate the differential absorption optical depth (DAOD) from the lidar data. The CO2 column-averaged dry-air mixing ratio (XCO2) was calculated over different types of surfaces including mountain, ocean, and urban areas. The concentrations of the XCO2 calculated from lidar measurements over ocean, mountain, and urban areas were 421.11 ± 1.24, 427.67 ± 0.58, and 432.04 ± 0.74 ppm, respectively. Moreover, through the detailed analysis of the data obtained from the UGGA, the influence of pollution levels on the CO2 concentration was also studied. During the whole flight campaign, 18 March was the most heavily polluted day with an Air Quality Index (AQI) of 175 and PM2.5 of 131 µg m−3. The aerosol optical depth (AOD) reported by a sun photometer installed at the Funing ground station was 1.28. Compared to the other days, the CO2 concentration measured by UGGA at different heights was the largest on 18 March with an average value of 422.59 ± 6.39 ppm, which was about 10 ppm higher than the measurements recorded on 16 March. Moreover, the vertical profiles of Orbiting Carbon Observatory-2 (OCO-2) and CarbonTracker were also compared with the aircraft measurements. All the datasets showed a similar variation with some differences in their CO2 concentrations, which showing a good agreement among them.


2021 ◽  
Vol 14 (10) ◽  
pp. 6443-6468
Author(s):  
Richard J. Roy ◽  
Matthew Lebsock ◽  
Marcin J. Kurowski

Abstract. Differential absorption radar (DAR) near the 183 GHz water vapor absorption line is an emerging measurement technique for humidity profiling inside of clouds and precipitation with high vertical resolution, as well as for measuring integrated water vapor (IWV) in clear-air regions. For radar transmit frequencies on the water line flank away from the highly attenuating line center, the DAR system becomes most sensitive to water vapor in the planetary boundary layer (PBL), which is a region of the atmosphere that is poorly resolved in the vertical by existing spaceborne humidity and temperature profiling instruments. In this work, we present a high-fidelity, end-to-end simulation framework for notional spaceborne DAR instruments that feature realistically achievable radar performance metrics and apply this simulator to assess DAR's PBL humidity observation capabilities. Both the assumed instrument parameters and radar retrieval algorithm leverage recent technology and algorithm development for an existing airborne DAR instrument. To showcase the capabilities of DAR for humidity observations in a variety of relevant PBL settings, we implement the instrument simulator in the context of large eddy simulations (LESs) of five different cloud regimes throughout the trade-wind subtropical-to-tropical cloud transition. Three distinct DAR humidity observations are investigated: IWV between the top of the atmosphere and the first detected cloud bin or Earth's surface; in-cloud water vapor profiles with 200 meter vertical resolution; and IWV between the last detected cloud bin and the Earth's surface, which can provide a precise measurement of the sub-cloud humidity. We provide a thorough assessment of the systematic and random errors for all three measurement products for each LES case and analyze the humidity precision scaling with along-track measurement integration. While retrieval performance depends greatly on the specific cloud regime, we find generally that for a radar with cross-track scanning capability, in-cloud profiles with 200 m vertical resolution and 10 %–20 % uncertainty can be retrieved for horizontal integration distances of 100–200 km. Furthermore, column IWV can be retrieved with 10 % uncertainty for 10–20 km of horizontal integration. Finally, we provide some example science applications of the simulated DAR observations, including estimating near-surface relative humidity using the cloud-to-surface column IWV and inferring in-cloud temperature profiles from the DAR water vapor profiles by assuming a fully saturated environment.


Sign in / Sign up

Export Citation Format

Share Document