The Fabrication of a Three Dimensional Feeder: A Problem in Sheet-Metal Bending

Author(s):  
D. Culpin ◽  
R. Cowan
2005 ◽  
Vol 6-8 ◽  
pp. 287-294 ◽  
Author(s):  
T.H.M. Nguyen ◽  
Joost R. Duflou ◽  
Jean Pierre Kruth

Sheet metal bending is a metal forming process, in which flat sheets are bent along straight bend lines in a specific bending sequence to form three-dimensional parts. A large number of tools with different characteristics can be used in this process. The task to choose the right tooling for a requested sheet metal part is however one of the bottle necks in process planning. An inefficient tool selection may result in failure of finding a feasible bending sequence. In previous work, methodologies for tool selection and optimization have been proposed. The presented paper describes a framework to implement these methodologies into a system that allows automatic tool selection in consistent consideration of bend sequencing. As a result, automated and optimized tool selection for sheet metal bending is achieved, as illustrated by performance test results for a robust software implementation.


1997 ◽  
Vol 119 (3) ◽  
pp. 324-331 ◽  
Author(s):  
I-Nan Chou ◽  
Chinghua Hung

The purpose of this research was to find manufacturing processing conditions that would prevent the occurrence of fractures in a sheet-metal bending product. The finite element code ABAQUS was used to analyze the tensile strain at the particular point where fractures frequently occur. First an optimal combination of factors was sought using the method of controlling parameters. The analysis showed that the three factors, r2, r4, and the coefficient of friction, which are typical controlling factors, cannot be used to reduce the tensile strain at the critical point efficiently. A preform design was then applied to solve the problem of fracturing. By using a two-step bending operation, we successfully moved the highest tensile strain away from the critical point and also reduced the magnitude of this strain.


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2014 ◽  
Vol 687-691 ◽  
pp. 3-6
Author(s):  
Da Ming Wang ◽  
Ming Zhe Li ◽  
Zhong Yi Cai

3D rolling is a novel technology for three-dimensional surface parts. In this process, by controlling the gap between the upper and lower forming rolls, the sheet metal is non-uniformly thinned in thickness direction, and the longitudinal elongation of the sheet metal is different along the transverse direction, which makes the sheet metal generate three-dimensional deformation. In this paper, the transition zones of spherical surface parts in 3D rolling process are investigated. Spherical surface parts with the same widths but different lengths are simulated in condition of the same roll gap, and their experimental results are presented. The forming precision of forming parts and the causes of transition zones in the head and tail regions are analyzed through simulated results. The simulated and experimental results show that the lengths of transition zones of spherical surfaces in the head and tail regions are fixed values in condition of the same sheet width and roll gap.


2014 ◽  
Vol 15 ◽  
pp. 439-446 ◽  
Author(s):  
U. Damerow ◽  
D. Tabakajew ◽  
M. Borzykh ◽  
W. Schaermann ◽  
W. Homberg ◽  
...  

2020 ◽  
pp. 1-15
Author(s):  
Yue Lin ◽  
Wei Shen ◽  
Lifei Song ◽  
Enqian Liu

To meet the demand of automatic production, the multisquare punch forming has been improved to process complex curved plates. However, the improved forming equipment improves the processing quality to the maximum extent, and springback and residual stresses are inevitable phenomena in the cold bending process. Residual stress is an important factor that causes fatigue crack and stress corrosion crack. And the residual stress in machining will seriously affect the fatigue life of cold-pressed parts. Therefore, it is necessary to quantitatively and qualitatively analyze the residual stress caused by the cold forming equipment. Through theoretical derivation and finite element simulation methods, the residual stress distribution for thick plates in the cold forming process was analyzed and compared in this article. Meanwhile, the variation law of residual stress peak with thickness and forming radius was further discussed. The results show that the residual stress distributions obtained by the two theoretical models are in good agreement with the numerical results. The maximum error of peak residual stress is about 10%, which verifies the reliability of theoretical formulas. 1. Introduction A large number of complex curved sheet metal parts are used in aerospace, marine structure, automobile, and other manufacturing industries, which makes the processing and forming of complex curved sheet metal parts attract much attention. In the process of ship construction, the forming and processing of hull plates is an important part of the low intelligence, time-consuming, and serious constraint on shipbuilding automation. Strictly speaking, most of the parts in the hull plate are three-dimensional curved surfaces, most of which are composed of complex undevelopable spatial curved surfaces. It is a very difficult and urgent key technology to process a ship's steel plate into complex three-dimensional curved surface shapes. such as saddle shape or sailed shape (see Fig. 1A), to create a streamlined outer body of the ship. For many years, bending of plates with complex curvatures has been carried out by manual operation, i.e., the combination of heat line forming and rolling bending (see Fig. 1B). However, the production efficiency of the thermoforming process is relatively low, and environmental pollution is relatively serious with bad working conditions and high labor intensity. Moreover, the forming quality depends more on the experience of technicians, and quality cannot be guaranteed. With the increasing demand for automation, the multipoint forming equipment was developed and used for stamping and forming of curved plates.


Author(s):  
Satyandra K. Gupta

Abstract Sheet metal bending press-brakes can be setup to produce more than one type of parts without requiring a setup change. To exploit this flexibility, we need setup planning techniques to generate press-brake setups that can be shared among many different parts. In this paper, we describe an algorithm which partitions a given set of parts into setup compatible part families which can be produced on the same setup. Our algorithm is based on a two step approach. The first step is to identify setup constraints for each individual part. The second step is to form setup-compatible part families based on the compatibility of setup constraints. We expect that by producing many different types of parts on the same setup, we can significantly reduce the required number of setups and enable cost effective small batch manufacturing.


Sign in / Sign up

Export Citation Format

Share Document