elastoplastic material
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 23 (4) ◽  
pp. 125-139
Author(s):  
Kirill Zakharchenko ◽  
◽  
Vladimir Kapustin ◽  
Alexey Larichkin ◽  
◽  
...  

Introduction. The strength of construction materials when used under cyclic loads is of great importance in design engineering. A significant number of factors that affect the fatigue resistance have predetermined the creation of numerous methods that consider such influence. Nondestructive methods that are based on the connection of the physical degradation of material with strain properties enable evaluating experimentally the fatigue properties of materials. Purpose of study: the analysis of the processes of energy dissipation and strain accumulation during the inelastic cyclic strain of samples, using the VT6 (Ti-6Al-4V) titanium alloy and the D16 (Al-Cu-Mg) aluminum alloy before and after the technological impact. The work experimentally investigates the physical processes of degradation of the VT6 and D16 alloy samples that accompany the process of fatigue failure in materials with homogeneous and inhomogeneous stress-strain states in the concentrator (in the form of a hole and a weld). Typical modes are used to reach the fatigue testing that determine the critical stress in a material sample – the stress at which physical properties (temperature, strain) change without reaching the fatigue failure of samples. Critical stress amplitudes in the cycle, based on the data obtained during the experiment and the results of mathematical simulation, are compared. The effect of stress concentrators on critical loads that a detail can withstand after a unit operation is estimated by the finite-element method (FEM). As a result, the effect of the operational and technological factors on critical stress determined by strain and temperature is estimated. Comparative tests of the VT6 and D16 alloy samples with and without stress concentrators showed that the amplitudes of critical stress decrease by more than 30% in comparison with the ones that are without stress concentrators. The low-cycle fatigue tests of the D16 alloy samples are carried out. Mathematical simulation of the cyclic strain of the samples is carried out using MSC.Marc package. The results of the cyclic loading tests, which show that the characteristics of the technological process reduce the amplitudes of the critical stress of the VT6 and D16 alloys and affect the fatigue properties of the D16 aluminum alloy, are discussed. Mathematical simulation corresponded positively to the experimental data. Such correspondence indicates the possibility of conducting qualitative numerical assessments of the beginning of the inelastic strain accumulation process in structures with stress concentrators under the cyclic stress and the increasing stress amplitude, using the typical sample made of hardening elastoplastic material.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012035
Author(s):  
G G Sirata ◽  
H G Lemu ◽  
K Waclawiak ◽  
Y D Jelila

Abstract This study presents the rail wheel contact problems under normal and tangential categories. Both analytical and numerical approaches were used for modelling, where the analytical approach assumed elliptical contact patches based on the Hertz theory. In the numerical approach, 3D finite element models were used to investigate non-elliptical contact patches. The only elastic material model was considered in the case of Hertz theory. However, in the case of finite element analysis, both elastic and elastoplastic material models were used to simulate the material's behavior under the applied load. The elastoplastic material model was used to determine the amount of stress at which the plastic deformation starts, which enables determining the rail wheel's critical load. The commercial software ABAQUS was employed for 3D modeling and contact stress analysis. The study shows maximum stress at 3 mm from the rail wheel contact surface when the maximum load of 85 kN is applied. This initiates the cracks in the subsurface and causes the portion of the rail wheel to break off in the form of spalling after a certain time.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4795
Author(s):  
Maria Pappa ◽  
Georgios Savaidis ◽  
Nikolaos Michailidis

Heat-treated and shot-peened lightweight steels with demanding requirements for durability are applied in high-performance automotive leaf springs. Due to their heat-treatment they exhibit degraded properties in the surface-near area compared to the core. This area, which may extend until 300 μm from the surface to the core, experiences the highest bending stresses at operation. The microstructure in the surface and sub-surface layers determines the mechanical performance as well as the wear resistance. The present study refers to the material properties of a stress shot-peened 51CrV4 steel at various depths from the surface. The effect of the manufacturing process has been captured both by Vickers micro-hardness measurements and nanoindentation. The latter combined with a Fine Element Method (FEM)-based algorithm enables the determination of variations in the material’s stress–strain curves over the affected layers, which translate to internal stress changes. The nanoindentation technique has been applied here successfully for the first time ever on leaf springs. The combination of microstructural analysis, microhardness and nanoindentation captures the changes of the treated material, offering insights on the material characteristics, and yielding accurate elastoplastic material properties for local, layered-based analysis of the components’ mechanical performance at operational loading scenarios, i.e. in the framework of stress shot-peening simulation models.


Author(s):  
Zhong Hu ◽  
Anthony P Parker

Abstract This work reports a new finite element analysis (FEA)-based user programmable function (UPF) featuring true material constitutive behavior with proper algorithms for accurate stress analysis of swage autofrettage of high-strength thick-walled cylinders. The material constitutive model replicates an existing Bauschinger-effect characterization (BEC). This incorporates elastoplastic material behavior during loading. Reversed loading includes a reduced elastic modulus and nonlinear plasticity resulting from the Bauschinger effect (BE), both depend upon the maximum level of loading plastic strain. Swage autofrettage case studies identify the difference in stress distributions based on different material models: a bilinear isotropic material model, a bilinear kinematic hardening model, and the user defined model that features the BEC. Development and integration of such a UPF into a standard FEA package is a crucial unresolved and fundamental modeling issue relating to re-yield, fatigue and fracture of modern swaged cylinders and pressure vessels. It will not only provide a fundamental understanding of the deformation mechanics of the tube during the swage autofrettage process and ensure optimal process parameters are achieved, but also provide guidance for material selection, design and optimization of the manufacturing processes for high intensity cylindrical parts, a potential multibillion-dollar market. Near-bore residual stresses for the BEC case are noteworthy and reported in detail, e.g., axial residual stress is tensile and hoop residual stress exhibits a distinct slope reversal, unlike hydraulic autofrettage, indicating the possible need to re-assess the ASME Pressure Vessel Code (correction for BE) regarding swage autofrettage.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


2021 ◽  
Author(s):  
Hamid Reza Bayat ◽  
Ali Rajaei Harandi ◽  
Shahed Rezaei ◽  
Tim Brepols ◽  
Stefanie Reese

In this study, the failure behavior at the interface of ductile materials is investigated. In order to capture the degradation of the tractions at the interface, a cohesive zone (CZ) model is applied. The choice of the type of the CZ approach, i.e. either intrinsic or extrinsic, brings about different drawbacks. The former includes an elastic regime at the interface prior to the failure, which can result in numerical difficulties whereas the latter necessitates the re-meshing of the structure during crack propagation. In order to overcome these problems, the incomplete interior penalty Galerkin variant of the discontinuous Galerkin (DG) method is applied both at the interface and in the bulk instead of the standard conforming finite element method. In addition, the application of the DG method enables to use nonmatching meshes in the discretized model. To treat the bulk, an elastoplastic material model with isotropic hardening as well as different hardening rules for small strains is incorporated into the DG framework. Two numerical examples are computed to study the convergence behavior of the new cohesive discontinuous Galerkin (CDG) method in comparison to that of the conventional models. The new CDG method outperforms the conventional CZ continuous Galerkin elements in the presence of locking effects as well as hanging nodes.


2021 ◽  
Vol 49 (6) ◽  
pp. 20200683
Author(s):  
Christian Ullner ◽  
Andreas Subaric-Leitis ◽  
Matthias Bartholmai

2021 ◽  
Vol 67 (5) ◽  
pp. 1431-1452
Author(s):  
Karlo Seleš ◽  
Fadi Aldakheel ◽  
Zdenko Tonković ◽  
Jurica Sorić ◽  
Peter Wriggers

AbstractIn this work, the phase-field approach to fracture is extended to model fatigue failure in high- and low-cycle regime. The fracture energy degradation due to the repeated externally applied loads is introduced as a function of a local energy accumulation variable, which takes the structural loading history into account. To this end, a novel definition of the energy accumulation variable is proposed, allowing the fracture analysis at monotonic loading without the interference of the fatigue extension, thus making the framework generalised. Moreover, this definition includes the mean load influence of implicitly. The elastoplastic material model with the combined nonlinear isotropic and nonlinear kinematic hardening is introduced to account for cyclic plasticity. The ability of the proposed phenomenological approach to naturally recover main features of fatigue, including Paris law and Wöhler curve under different load ratios is presented through numerical examples and compared with experimental data from the author’s previous work. Physical interpretation of additional fatigue material parameter is explored through the parametric study.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Marcus Portelli ◽  
Michele Pasquali ◽  
Federico Carra ◽  
Alessandro Bertarelli ◽  
Pierluigi Mollicone ◽  
...  

The High-Luminosity Large Hadron Collider upgrade at CERN will result in an increase in the energy stored in the circulating particle beams, making it necessary to assess the thermomechanical performance of currently used and newly developed materials for use in beam intercepting devices such as collimators and absorbers. This study describes the thermomechanical characterisation of a novel copper diamond grade selected for use in tertiary collimators of the HL-LHC. The data obtained are used to build an elastoplastic material model and implemented in numerical simulations performed to benchmark experimental data obtained from the recently completed MultiMat experiment conducted at CERN’s HiRadMat facility, where various materials shaped as slender rods were tested under particle beam impact. The analyses focus on the dynamic longitudinal and flexural response of the material, with results showing that the material model is capable of replicating the material behaviour to a satisfactory level in both thermal and structural domains, accurately matching experimental measurements in terms of temperature, frequency content, and amplitude.


Sign in / Sign up

Export Citation Format

Share Document