scholarly journals Concept for a Self-correcting Sheet Metal Bending Operation

2014 ◽  
Vol 15 ◽  
pp. 439-446 ◽  
Author(s):  
U. Damerow ◽  
D. Tabakajew ◽  
M. Borzykh ◽  
W. Schaermann ◽  
W. Homberg ◽  
...  
Author(s):  
Satyandra K. Gupta

Abstract Sheet metal bending press-brakes can be setup to produce more than one type of parts without requiring a setup change. To exploit this flexibility, we need setup planning techniques to generate press-brake setups that can be shared among many different parts. In this paper, we describe an algorithm which partitions a given set of parts into setup compatible part families which can be produced on the same setup. Our algorithm is based on a two step approach. The first step is to identify setup constraints for each individual part. The second step is to form setup-compatible part families based on the compatibility of setup constraints. We expect that by producing many different types of parts on the same setup, we can significantly reduce the required number of setups and enable cost effective small batch manufacturing.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986156
Author(s):  
Fengyu Xu ◽  
Quansheng Jiang ◽  
Lina Rong ◽  
Pengfei Zhou ◽  
Jinlong Hu

Bending is an important procedure for processing sheet metals, while it is a key link in the realization of automatic processing of sheet metal. To improve the efficiency and accuracy of bending processing, this article proposed a structure model and a prototype of a six-axis Cartesian coordinate robot for sheet metal bending to replace workers completing automatic bending processes. Based on the analysis of overall structure schemes of the robot, kinematic simulation is conducted by using the automatic dynamic analysis of mechanical system (ADAMS). Furthermore, the dynamic performance of the structural model of the robot for sheet metal bending is analysed and design optimization is performed. A prototype of the robot based on the optimal structural model of six-axis Cartesian coordinate robot for sheet metal bending is made. Finally, under the work conditions, the efficiencies and accuracies of sheet metal bending by a worker and the robot are compared and tested. The structural model of six-axis Cartesian coordinate robot for sheet metal bending presented in this article is found to be applicable to sheet metal bending robot and improves the stability of sheet metal bending machine. The laboratory testing and experimental results verified the feasibility of the proposed robot.


Sign in / Sign up

Export Citation Format

Share Document