In-Situ Petrohydraulic Parameters from Tidal and Barometric Analysis of Fluid Level Variations in Deep Wells: Some Results From KTB

Author(s):  
Katja C. Schulze ◽  
Hans-Joachim Kümpel ◽  
Ernst Huenges
Keyword(s):  
Author(s):  
Aygun Vahid Mammadova

Geothermal field of the Pliocene complex in the Absheron peninsula, Azerbaijan have been examined on the basis of temperature distributions in over 50 deep wells. Data analysis include variations in geothermal gradient and distribution of heat flow within complexes of Absheron formation of upper Pliocene in age. Geothermal gradients are in the range of 17 to 25oC/km. The heat flow values are found to fall in the range of 50 to 80mW/m2. Estimates have been made of geothermal energy resources up to depths of 6000 meters. The main productive strata are of middle Pliocene in age. The results have allowed identification of geothermal resources with temperature above the 20°C and at depths less than 110-180 meters. Assessments of in-situ and recoverable resources have been made for 21 sites. Model simulations point to perspectives for widespread utilization of geothermal energy in the Absheron peninsula.


2005 ◽  
Vol 867 ◽  
Author(s):  
Caprice Gray ◽  
Daniel Apone ◽  
Chris Rogers ◽  
Vincent P. Manno ◽  
Chris Barns ◽  
...  

AbstractThe interaction of the wafer, slurry and pad determines the material removal rate during Chemical Mechanical Planarization (CMP). Dual emission laser induced fluorescence (DELIF) provides a means to measure the slurry layer thickness between the wafer and a Fruedenbergy FX9 pad during CMP with high spatial (4.3 μm/pixel) and temporal resolution (2 Hz). In this paper we present some preliminary measurements of pad compression using DELIF to measure the standard deviation of asperity height. Static slurry layer images were captured at high (70 kPa) and low (0 kPa) down-force applied to the wafer. In-situ, dynamic images at 10 kPa downforce applied to etched wafers were imaged. Two wafers were etched such that they contain square wells, one wafer with 27 μm and the other will 14.5 μm deep wells. In the static case, asperity compression is directly related the amount of fluid displaced. In the dynamic case, asperity compression is 35% greater under the 27 μm wells than the 14.5 μm wells.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document