scholarly journals Temperature Distribution and Heat Flow Density Estimation in Geothermal Areas of Absheron Peninsula

Author(s):  
Aygun Vahid Mammadova

Geothermal field of the Pliocene complex in the Absheron peninsula, Azerbaijan have been examined on the basis of temperature distributions in over 50 deep wells. Data analysis include variations in geothermal gradient and distribution of heat flow within complexes of Absheron formation of upper Pliocene in age. Geothermal gradients are in the range of 17 to 25oC/km. The heat flow values are found to fall in the range of 50 to 80mW/m2. Estimates have been made of geothermal energy resources up to depths of 6000 meters. The main productive strata are of middle Pliocene in age. The results have allowed identification of geothermal resources with temperature above the 20°C and at depths less than 110-180 meters. Assessments of in-situ and recoverable resources have been made for 21 sites. Model simulations point to perspectives for widespread utilization of geothermal energy in the Absheron peninsula.

Author(s):  
B. C. Udochukwu ◽  
M. Akiishi ◽  
A. A. Tyovenda

The aeromagnetic data of Monguno area northeastern Nigeria have been used to estimate Curie point depth, geothermal gradients and heat flow using spectral analysis. These geothermal parameters were subsequently employed to identify areas of geothermal resources. First order polynomial fitting was applied in Regional-residual separation. The Curie point depth obtained in this area ranges from 10.318 to 24.476 km with an average of 13.387 km, the geothermal gradient of the area varies from 23.697 to 56.212°C /km, with an average of 46.195°C /km, while the heat flow ranges from 59.242 to 136.176 mWm-2, with an average value of about 112.364 mWm-2. It was also observed that the deepest Curie depth in the area is identified in the south, while the shallow depth is located in the northeast and spread toward the southwest. On the other hand, the highest geothermal gradient in the area is identified in the northern part of Moguno, while in the south,                    the lowest, geothermal gradient is located. The highest heat flow in the area is seen in the south-west and north-east, while the lowest heat flow is observed in the south. The high heat flow and geothermal gradient in the area show that geothermal energy could be found in Monguno region of the northeastern Nigeria.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yifan Fan ◽  
Shikuan Zhang ◽  
Yonghui Huang ◽  
Zhonghe Pang ◽  
Hongyan Li

Recoverable geothermal resources are very important for geothermal development and utilization. Generally, the recovery factor is a measure of available geothermal resources in a geothermal field. However, it has been a pre-determined ratio in practice and sustainable utilization of geothermal resources was not considered in the previous calculation of recoverable resources. In this work, we have attempted to develop a method to calculate recoverable geothermal resources based on a numerical thermo-hydraulic coupled modeling of a geothermal reservoir under exploitation, with an assumption of sustainability. Taking a geothermal reservoir as an example, we demonstrate the effectiveness of the method. The recoverable geothermal resources are 6.85 × 1018 J assuming a lifetime of 100 years in a well doublet pattern for geothermal heating. We further discuss the influence of well spacing on the recoverable resources. It is found that 600 m is the optimal well spacing with maximum extracted energy that conforms to the limit of the pressure drop and no temperature drop in the production well. Under the uniform well distribution pattern for sustainable exploitation, the recovery factor is 26.2%, which is higher than the previous value of 15% when depending only on lithology. The proposed method for calculating the recoverable geothermal resources is instructive for making decisions for sustainable exploitation.


2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.


Author(s):  
Vladimir I. Zui ◽  
Siamak Mansouri Far Far

The Caspian Sea and adjacent areas form the vast oil and gas-bearing megabasin. It consists of North Caspian, Middle Caspian, and South Caspian sedimentary basins. The granite-metamorphic basement of the basins becomes from north to south younger in the direction from Early Precambrian to Early Cimmerian age. It represents a transitional zone from the southern edge of the East European Craton to Alpine folding. Geothermal investigations have been carried out both in hundreds of deep boreholes and within the Caspian Sea and a few preliminary heat flow maps were published for the Caspian Sea region. All they excluded from consideration the southern part of the region within Iranian national borders. We prepared a new heat flow map including the northern Iran. The purpose of the article is to consider heat flow pattern within the whole Caspian Sea region including its southern part. Two vast high heat flow anomalies above 100 mW/m2 distinguished in the map: within the southwestern Iran and in waters of the Caspian Sea to the North of the Apsheron Ridge, separated by elongated strip of heat flow below 50 –55 mW/m 2 . A general tendency of heat flow from growing was distinguished from the Precambrian crustal blocks of the North Caspian Depression to the Alpine folding within the territory of Iran. Analysis of the heat flow pattern is discussed and two heat flow density profiles were compiled.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 638
Author(s):  
Zhenzhou Zhu ◽  
Xiaodong Lei ◽  
Nengxiong Xu ◽  
Dongyue Shao ◽  
Xingyu Jiang ◽  
...  

With the increasing demand for energy and the growing concern for atmospheric pollution in Beijing, China, the exploitation and utilization of geothermal resources are becoming more desirable. The study combined three-dimensional geological modeling with geothermal field analysis to make clear the potential and distribution of geothermal resources in the northwest of the Beijing plain, which could provide a scientific basis for rational utilization in the study area. Based on the analysis of the geological data and geothermal conditions, we created a 3D geological model of the study area, and then added isothermal surfaces into the model and analyzed the heat flow to enhance the understanding of the present geothermal field. After that, the volumes of different temperature intervals of heat reservoirs were calculated accurately and automatically by the integration of the model and the isothermal surfaces. Finally, the geothermal reserves were calculated by the improved volumetric method, and the distribution of resources was analyzed comprehensively. The results showed that, in the study area, the heat flow values ranged from 49 to 99 mW m−2, and the average elevations of 25 °C, 40 °C, and 60 °C isothermal surfaces were at −415 m, −1282 m, and −2613 m, respectively. The geothermal reserves were 5.42 × 1019 J and the volume of the heat reservoir was 4.88 × 1011 m3. The geothermal resources of the study area had good potential and could support local green development.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4476 ◽  
Author(s):  
Yuhao Zhu ◽  
Kewen Li ◽  
Changwei Liu ◽  
Mahlalela Bhekumuzi Mgijimi

Development of geothermal resources on abandoned oil reservoirs is considered environmentally friendly. This method could reduce the rate of energy consumption from oil fields. In this study, the feasibility of geothermal energy recovery based on a deep borehole heat exchanger modified from abandoned oil reservoirs using in situ combustion technology is investigated. This system could produce a large amount of heat compensated by in situ combustion in oil reservoir without directly contacting the formation fluid and affecting the oil production. A coupling strategy between the heat exchange system and the oil reservoir was developed to help avoid the high computational cost while ensuring computational accuracy. Several computational scenarios were performed, and results were obtained and analyzed. The computational results showed that an optimal water injection velocity of 0.06 m/s provides a highest outlet temperature of (165.8 °C) and the greatest power output of (164.6 kW) for a single well in all the performed scenarios. Based on the findings of this study, a geothermal energy production system associated with in situ combustion is proposed, specifically for economic reasons, because it can rapidly shorten the payback period of the upfront costs. Modeling was also performed, and based on the modeling data, the proposed technology has a very short payback period of about 4.5 years and a final cumulative net cash flow of about $4.94 million. In conclusion, the present study demonstrates that utilizing geothermal resources or thermal energy in oilfields by adopting in situ combustion technology for enhanced oil recovery is of great significance and has great economic benefits.


2019 ◽  
Vol 37 (3) ◽  
pp. 1039-1052 ◽  
Author(s):  
Yue Gaofan ◽  
Wang Guiling ◽  
Ma Feng ◽  
Zhang Wei ◽  
Yang Zhijie

There are abundant geothermal resources in the Xiong’an New Area, China. However, the thermal state and geothermal energy accumulation mechanism are not clear. Based on the geological conditions and the characteristics of the present geothermal field, a 2D model was established to analyze the process of mantle-derived heat conduction and to predict the distribution of the deep geothermal field. We calculated the terrestrial heat flow for the Rongcheng uplift and Niutuozhen uplift to be 64 and 75 mW/m2, respectively. The geothermal resources in this area are controlled by a four-element model comprising heat conduction, structural uplift, large deep fractures, and convection within the reservoir.


Geophysics ◽  
1981 ◽  
Vol 46 (1) ◽  
pp. 76-83 ◽  
Author(s):  
J. H. Sass ◽  
J. P. Kennelly ◽  
W. E. Wendt ◽  
T. H. Moses ◽  
J. P. Ziagos

Subsurface thermal measurements are the most effective, least ambiguous tools for locating geothermal resources. Measurements of thermal gradient in the upper few tens of meters can delineate the major anomalies, but it is also desirable to combine these gradients with reliable estimates of thermal conductivity, to provide data on the energy flux and to constrain models of the heat sources responsible for the anomalies. Problems associated with such heat flow measurements include the economics of casing or grouting holes, the long waits and repeated visits necessary to obtain equilibrium temperature values, the possible legal liability arising from disturbance of aquifers, the hazards presented by pipes protruding from the ground, and the security problems associated with leaving cased holes open for periods of weeks to months.


2016 ◽  
Vol 46 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dušan Majcin ◽  
Roman Kutas ◽  
Dušan Bilčík ◽  
Vladimír Bezák ◽  
Ignat Korchagin

Abstract The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth’s crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.


Author(s):  
Vladimir I. Zui ◽  
Lukman Akinyemi

A traditional approach for heat flow determination requires two parameters. They are a geothermal gradient and heat conductivity of rocks comprising the considered depth interval. The geothermal gradient is determined from a thermogram recorded in a wellbore and the heat conductivity is obtained from the laboratory measurements of selected rock samp les. There are some variations of this approach to both get the gradient and heat conductivity values. However, there are many areas without boreholes to register their thermograms, or at least to have several temperature readings at intermediate positions of bottom holes and traditional methods of heat flow determinations cannot be used. Recently another method was proposed to estimate heat flow. It was derived from spectral analysis of magnetic field. During last years it was widely used in Nigeria for areas where deep boreholes are absent. It uses estimates of depths to the base and bottom of the causative body derived from analysis of the magnetic field maps. The base of the causative body corres ponds to the depth of the Curie surface at which rocks lose their magnetic properties. It is known that it happens at the temperature around 580 °C that slightly varies depending on the content of magnetite within the causative body. The temperature at the top of this body is estimated. The heat flow density can be calculated knowing the geothermal gradient within this depth interval and heat conductivity of rocks. A preliminary heat flow density map was compiled based on all accessible heat flow data. A comparison of heat flow data from several regions of the country, determined using both methods provides rather good agreement.


Sign in / Sign up

Export Citation Format

Share Document