Tree Species Recognition Based on Airborne Laser Scanning and Complementary Data Sources

Author(s):  
Jari Vauhkonen ◽  
Hans Ole Ørka ◽  
Johan Holmgren ◽  
Michele Dalponte ◽  
Johannes Heinzel ◽  
...  
2020 ◽  
Vol 12 (20) ◽  
pp. 3328
Author(s):  
Mohammad Imangholiloo ◽  
Ninni Saarinen ◽  
Markus Holopainen ◽  
Xiaowei Yu ◽  
Juha Hyyppä ◽  
...  

Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have created challenges for capturing this information using sensors providing sparse point densities that do not have the ability to penetrate canopy gaps or provide spectral information. Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds coupled with multispectral intensity data theoretically offer advantages for the characterization of seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating tree density and height. First, single-tree detection approaches were used to derive crown boundaries and tree heights from which forest structural attributes were aggregated for sample plots. To predict tree species, a random forests classifier was trained using features from two single-channel intensities (SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI) data composed of three mALS channels. The most important and uncorrelated features were analyzed and selected from 208 features. The highest overall accuracies in classification of Norway spruce, birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2 were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55% and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from vegetation returns was found to be critical, as mapped trees might have a height below one meter. The results showed that mALS data provided benefits for characterizing seedling stands compared to single-channel ALS systems.


2018 ◽  
Vol 51 (1) ◽  
pp. 336-351 ◽  
Author(s):  
Øivind Due Trier ◽  
Arnt-Børre Salberg ◽  
Martin Kermit ◽  
Øystein Rudjord ◽  
Terje Gobakken ◽  
...  

2015 ◽  
Vol 7 (6) ◽  
pp. 6710-6740 ◽  
Author(s):  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
Juha Hyyppä ◽  
Eetu Puttonen ◽  
Anssi Krooks ◽  
...  

Author(s):  
M. Pilarska ◽  
W. Ostrowski

<p><strong>Abstract.</strong> Airborne laser scanning (ALS) plays an important role in spatial data acquisition. One of the advantages of this technique is laser beam penetration through vegetation, which makes it possible to not only obtain data on the tree canopy but also within and under the canopy. In recent years, multi-wavelength airborne laser scanning has been developed. This technique consists of simultaneous acquisition of point clouds in more than one band. The aim of this experiment was to examine and assess the possibilities of tree segmentation and species classification in an urban area. In this experiment, point clouds registered in two wavelengths (532 and 1064&amp;thinsp;nm) were used for tree segmentation and species classification. The data were acquired with a Riegl VQ-1560i-DW laser scanner over Elblag, Poland, during August 2018. Tree species collected by a botanist team within terrain measurements were used as a reference in the classification process. Within the experiment segmentation and classification process were performed. Regarding the segmentation, TerraScan software and Li et al.’s algorithm, implemented in LidR package were used. Results from both methods are clearly over-segmented in comparison to the manual segments. In Terrasolid segmentation, single reference segments are over-segmented in 28% of cases, whereas, for LidR, over-segmentation occurred in 73% of the segments. According the classification results, Thuja, Salix and Betula were the species, for which the highest classification accuracy was achieved.</p>


Sign in / Sign up

Export Citation Format

Share Document