Compatibility of the Infinitesimal Deformation Tensor

Author(s):  
Ciprian D. Coman
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.


Author(s):  
Natasha Lepore ◽  
Caroline Brun ◽  
Yi-Yu Chou ◽  
Agatha D. Lee ◽  
Marina Barysheva ◽  
...  

Using tensor notations a general theory is developed for small elastic deformations, of either a compressible or incompressible isotropic elastic body, superposed on a known finite deformation, without assuming special forms for the strain-energy function. The theory is specialized to the case when the finite deformation is pure homogeneous. When two of the principal extension ratios are equal the changes in displacement and stress due to the small superposed deformation are expressed in terms of two potential functions in a manner which is analogous to that used in the infinitesimal deformation of hexagonally aeolotropic materials. The potential functions are used to solve the problem of the infinitesimally small indentation, by a spherical punch, of the plane surface of a semi-infinite body of incompressible isotropic elastic material which is first subjected to a finite pure homogeneous deformation symmetrical about the normal to the force-free plane surface. The general theory is also applied to the infinitesimal deformation of a thin sheet of incompressible isotropic elastic material which is first subjected to a finite pure homogeneous deformation by forces in its plane. A differential equation is obtained for the small deflexion of the sheet due to small forces acting normally to its face. This equation is solved completely in the case of a clamped circular sheet subjected to a pure homogeneous deformation having equal extension ratios in the plane of the sheet, the small bending force being uniformly distributed over a face of the sheet. Finally, equations are obtained for the homogeneously deformed sheet subjected to infinitesimal generalized plane stress, and a method of solution by complex variable technique is indicated.


Author(s):  
Christian Goodbrake ◽  
Alain Goriely ◽  
Arash Yavari

A central tool of nonlinear anelasticity is the multiplicative decomposition of the deformation tensor that assumes that the deformation gradient can be decomposed as a product of an elastic and an anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this configuration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on unsatisfactory ground. Here, we derive a sufficient condition for the existence of global intermediate configurations, starting from a multiplicative decomposition of the deformation gradient. We show that these global configurations are unique up to isometry. We examine the result of isometrically embedding these configurations in higher-dimensional Euclidean space, and construct multiplicative decompositions of the deformation gradient reflecting these embeddings. As an example, for a family of radially symmetric deformations, we construct isometric embeddings of the resulting intermediate configurations, and compute the residual stress fields explicitly.


1991 ◽  
Vol 113 (2) ◽  
pp. 187-191 ◽  
Author(s):  
A. Kumar ◽  
Shyam K. Samanta ◽  
K. Mallick

Many metal forming operations, such as rolling and tube drawing, are known to induce orthotropic anisotropy. The change of axes of orthotropy with subsequent deformation has been studied in this paper. The change in the orthotropy directions is of great importance for understanding and interpreting the subsequent yield behavior of metals. Based on Hill’s hypothesis that the orthotropy axes coincides with the principal directions of stretch, the change in orthotropy directions has been studied theoretically and experimentally. Since the grain shape and its direction of elongation is a good indicator of the principal stretches and its directions, it has been used as an experimental means of determining, not only the directions of principal stretches in an as received material, but also to determine approximately the deformation it has undergone so far from a reference state. A fully annealed isotropic state is chosen as the reference state. The directions of the axes of anisotropy, induced as a result of finite deformation applied to this reference state, are characterized in terms of the principal directions of the Cauchy’s deformation tensor. An experimental scheme has been developed to determine the varying directions of orthotropy for comparison with the theoretical model.


Sign in / Sign up

Export Citation Format

Share Document