scholarly journals Best individual template selection from deformation tensor minimization

Author(s):  
Natasha Lepore ◽  
Caroline Brun ◽  
Yi-Yu Chou ◽  
Agatha D. Lee ◽  
Marina Barysheva ◽  
...  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Sambit Bakshi ◽  
Pankaj K. Sa ◽  
Banshidhar Majhi

A novel approach for selecting a rectangular template around periocular region optimally potential for human recognition is proposed. A comparatively larger template of periocular image than the optimal one can be slightly more potent for recognition, but the larger template heavily slows down the biometric system by making feature extraction computationally intensive and increasing the database size. A smaller template, on the contrary, cannot yield desirable recognition though the smaller template performs faster due to low computation for feature extraction. These two contradictory objectives (namely, (a) to minimize the size of periocular template and (b) to maximize the recognition through the template) are aimed to be optimized through the proposed research. This paper proposes four different approaches for dynamic optimal template selection from periocular region. The proposed methods are tested on publicly available unconstrained UBIRISv2 and FERET databases and satisfactory results have been achieved. Thus obtained template can be used for recognition of individuals in an organization and can be generalized to recognize every citizen of a nation.


Author(s):  
Christian Goodbrake ◽  
Alain Goriely ◽  
Arash Yavari

A central tool of nonlinear anelasticity is the multiplicative decomposition of the deformation tensor that assumes that the deformation gradient can be decomposed as a product of an elastic and an anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this configuration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on unsatisfactory ground. Here, we derive a sufficient condition for the existence of global intermediate configurations, starting from a multiplicative decomposition of the deformation gradient. We show that these global configurations are unique up to isometry. We examine the result of isometrically embedding these configurations in higher-dimensional Euclidean space, and construct multiplicative decompositions of the deformation gradient reflecting these embeddings. As an example, for a family of radially symmetric deformations, we construct isometric embeddings of the resulting intermediate configurations, and compute the residual stress fields explicitly.


1991 ◽  
Vol 113 (2) ◽  
pp. 187-191 ◽  
Author(s):  
A. Kumar ◽  
Shyam K. Samanta ◽  
K. Mallick

Many metal forming operations, such as rolling and tube drawing, are known to induce orthotropic anisotropy. The change of axes of orthotropy with subsequent deformation has been studied in this paper. The change in the orthotropy directions is of great importance for understanding and interpreting the subsequent yield behavior of metals. Based on Hill’s hypothesis that the orthotropy axes coincides with the principal directions of stretch, the change in orthotropy directions has been studied theoretically and experimentally. Since the grain shape and its direction of elongation is a good indicator of the principal stretches and its directions, it has been used as an experimental means of determining, not only the directions of principal stretches in an as received material, but also to determine approximately the deformation it has undergone so far from a reference state. A fully annealed isotropic state is chosen as the reference state. The directions of the axes of anisotropy, induced as a result of finite deformation applied to this reference state, are characterized in terms of the principal directions of the Cauchy’s deformation tensor. An experimental scheme has been developed to determine the varying directions of orthotropy for comparison with the theoretical model.


Sign in / Sign up

Export Citation Format

Share Document