scholarly journals A CAD System for the Detection of Abnormalities in the Mammograms Using the Metaheuristic Algorithm Particle Swarm Optimization (PSO)

Author(s):  
Khaoula Belhaj Soulami ◽  
Mohamed Nabil Saidi ◽  
Ahmed Tamtaoui
2018 ◽  
Author(s):  
Boris Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


Author(s):  
I. I. Aina ◽  
C. N. Ejieji

In this paper, a new metaheuristic algorithm named refined heuristic intelligence swarm (RHIS) algorithm is developed from an existing particle swarm optimization (PSO) algorithm by introducing a disturbing term to the velocity of PSO and modifying the inertia weight, in which the comparison between the two algorithms is also addressed.


2018 ◽  
Author(s):  
Boris L Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


2021 ◽  
Author(s):  
Lalit Kumar ◽  
Manish Pandey ◽  
Mitul Kumar Ahirwal

Abstract Particle Swarm Optimization (PSO) is the well-known metaheuristic algorithm for optimization, inspired from swarm of species.PSO can be used in various problems solving related to engineering and science inclusive of but not restricted to increase the heat transfer of systems, to diagnose the health problem using PSO based on microscopic imaging. One of the limitations with Standard-PSO and other swarm based algorithms is large computational time as position vectors are dense. In this study, a sparse initialization based PSO (Sparse-PSO) algorithm has been proposed. Comparison of proposed Sparse-PSO with Standard-PSO has been done through evaluation over several standard benchmark objective functions. Our proposed Sparse-PSO method takes less computation time and provides better solution for almost all benchmark objective functions as compared to Standard-PSO method.


2018 ◽  
Author(s):  
Boris Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sign in / Sign up

Export Citation Format

Share Document