scholarly journals Resolving the optimal selection of a natural reserve using the particle swarm optimisation by applying transfer functions

Author(s):  
Boris Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.

2018 ◽  
Author(s):  
Boris Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


2018 ◽  
Author(s):  
Boris L Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


Author(s):  
I. I. Aina ◽  
C. N. Ejieji

In this paper, a new metaheuristic algorithm named refined heuristic intelligence swarm (RHIS) algorithm is developed from an existing particle swarm optimization (PSO) algorithm by introducing a disturbing term to the velocity of PSO and modifying the inertia weight, in which the comparison between the two algorithms is also addressed.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1654-1657
Author(s):  
Jie Liu ◽  
Xu Sheng Gan ◽  
Wen Ming Gao

To optimize the parameters of LS-SVM effectively, an improved Particle Swarm Optimization (PSO) algorithm is proposed to select the optimal parameters combination. For the improvement of the precocity in PSO algorithm, an multi-particles sharing strategy is introduced in simple PSO algorithm to enhance the convergence. The simulation indicates that the proposed PSO algorithm has a better selection on LS-SVM parameters.


2021 ◽  
Author(s):  
Lalit Kumar ◽  
Manish Pandey ◽  
Mitul Kumar Ahirwal

Abstract Particle Swarm Optimization (PSO) is the well-known metaheuristic algorithm for optimization, inspired from swarm of species.PSO can be used in various problems solving related to engineering and science inclusive of but not restricted to increase the heat transfer of systems, to diagnose the health problem using PSO based on microscopic imaging. One of the limitations with Standard-PSO and other swarm based algorithms is large computational time as position vectors are dense. In this study, a sparse initialization based PSO (Sparse-PSO) algorithm has been proposed. Comparison of proposed Sparse-PSO with Standard-PSO has been done through evaluation over several standard benchmark objective functions. Our proposed Sparse-PSO method takes less computation time and provides better solution for almost all benchmark objective functions as compared to Standard-PSO method.


2019 ◽  
Vol 8 (4) ◽  
pp. 7391-7395

Deep Neural Network (DNN) classifier is a DL model for categorizing the exactness of systematic scaling orders in the groupings as an Administration (IaaS) layer of cloud computing. The hypothesis in the study is that calculation precision of scaling orders can be improved by demonstrating a reasonable time-arrangement expectation calculation dependent on the presentation plan after some time. In the examination, outstanding burden was considered as the exhibition metric, and DNN were utilized as time-arrangement expectation procedures. The aftereffects of the trial demonstrate that expectation exactness of DNN relies upon there mining task at hand plan of the framework under learning. Precisely, the outcomes demonstrate that DNN has better forecast exactness in the situations with occasional and expanding remaining task at hand plans, while DNN in predicting unexpected load design. In addition, particle swarm optimization (PSO) algorithm is applied for the optimal selection of hidden layer count to resolve the classical DNN model which has the issue of trapping into local minima and the need of manual selection of hidden layer nodes. Accurately, this study proposed a DNN-PSO design for a self-versatile expectation suite utilizing an autonomic framework technique. This suite can indicate the maximum appropriate forecast technique based on the performance design, which leads to more exact forecast outcomes..


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Sha-sha Guo ◽  
Jie-sheng Wang ◽  
Meng-wei Guo

Particle swarm optimization (PSO) algorithm is a swarm intelligent searching algorithm based on population that simulates the social behavior of birds, bees, or fish groups. The discrete binary particle swarm optimization (BPSO) algorithm maps the continuous search space to a binary space through a new transfer function, and the update process is designed to switch the position of the particles between 0 and 1 in the binary search space. Aiming at the existed BPSO algorithms which are easy to fall into the local optimum, a new Z-shaped probability transfer function is proposed to map the continuous search space to a binary space. By adopting nine typical benchmark functions, the proposed Z-probability transfer function and the V-shaped and S-shaped transfer functions are used to carry out the performance simulation experiments. The results show that the proposed Z-shaped probability transfer function improves the convergence speed and optimization accuracy of the BPSO algorithm.


Sign in / Sign up

Export Citation Format

Share Document