scholarly journals Sparse Based Particle Swarm Optimization Algorithm

Author(s):  
Lalit Kumar ◽  
Manish Pandey ◽  
Mitul Kumar Ahirwal

Abstract Particle Swarm Optimization (PSO) is the well-known metaheuristic algorithm for optimization, inspired from swarm of species.PSO can be used in various problems solving related to engineering and science inclusive of but not restricted to increase the heat transfer of systems, to diagnose the health problem using PSO based on microscopic imaging. One of the limitations with Standard-PSO and other swarm based algorithms is large computational time as position vectors are dense. In this study, a sparse initialization based PSO (Sparse-PSO) algorithm has been proposed. Comparison of proposed Sparse-PSO with Standard-PSO has been done through evaluation over several standard benchmark objective functions. Our proposed Sparse-PSO method takes less computation time and provides better solution for almost all benchmark objective functions as compared to Standard-PSO method.

2013 ◽  
Vol 791-793 ◽  
pp. 1423-1426
Author(s):  
Hai Min Wei ◽  
Rong Guang Liu

Project schedule management is the management to each stage of the degree of progress and project final deadline in the project implementation process. Its purpose is to ensure that the project can meet the time constraints under the premise of achieving its overall objectives.When the progress of schedule found deviation in the process of schedule management ,the progress of the plan which have be advanced previously need to adjust.This article mainly discussed to solve the following two questions:establish the schedule optimization model by using the method of linear;discuss the particle swarm optimization (PSO) algorithm and its parameters which have effect on the algorithm:Particle swarm optimization (PSO) algorithm is presented in the time limited project and the application of a cost optimization.


2012 ◽  
Vol 182-183 ◽  
pp. 1953-1957
Author(s):  
Zhao Xia Wu ◽  
Shu Qiang Chen ◽  
Jun Wei Wang ◽  
Li Fu Wang

When the parameters were measured by using fiber Bragg grating (FBG) in practice, there were some parameters hard to measure, which would influenced the reflective spectral of FBG severely, and make the characteristic information harder to be extracted. Therefore, particle swarm optimization algorithm was proposed in analyzing the uniform force reflective spectral of FBG. Based on the uniform force sense theory of FBG and particle swarm optimization algorithm, the objective function were established, meanwhile the experiment and simulation were constructed. And the characteristic information in reflective spectrum of FBG was extracted. By using particle swarm optimization algorithm, experimental data showed that particle swarm optimization algorithm used in extracting the characteristic information not only was efficaciously and easily, but also had some advantages, such as high accuracy, stability and fast convergence rate. And it was useful in high precision measurement of FBG sensor.


2009 ◽  
Vol 05 (02) ◽  
pp. 487-496 ◽  
Author(s):  
WEI FANG ◽  
JUN SUN ◽  
WENBO XU

Mutation operator is one of the mechanisms of evolutionary algorithms (EAs) and it can provide diversity in the search and help to explore the undiscovered search place. Quantum-behaved particle swarm optimization (QPSO), which is inspired by fundamental theory of PSO algorithm and quantum mechanics, is a novel stochastic searching technique and it may encounter local minima problem when solving multi-modal problems just as that in PSO. A novel mutation mechanism is proposed in this paper to enhance the global search ability of QPSO and a set of different mutation operators is introduced and implemented on the QPSO. Experiments are conducted on several well-known benchmark functions. Experimental results show that QPSO with some of the mutation operators is proven to be statistically significant better than the original QPSO.


Irriga ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 798-817
Author(s):  
Saulo de Tarso Marques Bezerra ◽  
José Eloim Silva de Macêdo

DIMENSIONAMENTO DE REDES DE DISTRIBUIÇÃO DE ÁGUA MALHADAS VIA OTIMIZAÇÃO POR ENXAME DE PARTÍCULAS     SAULO DE TARSO MARQUES BEZERRA1 E JOSÉ ELOIM SILVA DE MACÊDO2   1 Universidade Federal de Pernambuco, Campus Agreste, Núcleo de Tecnologia, Avenida Campina Grande, S/N, Bairro Nova Caruaru, CEP 55014-900, Caruaru, Pernambuco, Brasil. [email protected]. 2 Centro Universitário Maurício de Nassau, Departamento de Engenharia Civil, BR 104, Km 68, S/N, Bairro Agamenon Magalhães, CEP 55000-000, Caruaru, Pernambuco, Brasil. [email protected].     1 RESUMO   Apresenta-se, neste trabalho, um modelo de otimização para o dimensionamento de sistemas pressurizados de distribuição de água para projetos de irrigação. A metodologia empregada é fundamentada no algoritmo Otimização por Enxame de Partículas (PSO), que é inspirada na dinâmica e comportamento social observados em muitas espécies de pássaros, insetos e cardumes de peixes. O PSO proposto foi aplicado em dois benchmark problems reportados na literatura, que correspondem à Hanoi network e a um sistema de irrigação localizado na Espanha. O dimensionamento resultou, para as mesmas condições de contorno, na solução de ótimo global para a Hanoi network, enquanto a aplicação do PSO na Balerma irrigation network demonstrou que o método proposto foi capaz de encontrar soluções quase ótimas para um sistema de grande porte com um tempo computacional razoável.   Palavras-chave: água, irrigação, análise econômica.     BEZERRA, S. T. M.; MACÊDO, J. E. S. LOOPED WATER DISTRIBUTION NETWORKS DESIGN VIA PARTICLE SWARM OPTIMIZATION ALGORITHM     2 ABSTRACT   This paper presents an optimization model for the design of pressurized water distribution systems for irrigation projects. The methodology is based on the Particle Swarm Optimization algorithm (PSO), which is inspired by the social foraging behavior of some animals such as flocking behavior of birds and the schooling behavior of fish. The proposed PSO has been tested on two benchmark problems reported in the literature, which correspond to the Hanoi network and an irrigation system located in Spain. The design resulted in the global optimum for the Hanoi network, while the application of PSO in Balerma irrigation network demonstrated that the proposed method was able to find almost optimal solutions for a large-scale network with reasonable computational time.   Keywords: water, irrigation, economic analysis. O desempenho do método foi comparado com trabalhos prévios, demonstrando convergência rápida e resultados satisfatórios na busca da solução ótima de um sistema com elevado exigência computacional.


2021 ◽  
pp. 242-249
Author(s):  
M.Shahkhir Mozamir ◽  
◽  
Rohani Binti Abu Bakar ◽  
Wan Isni Soffiah Wan Din ◽  
Zalili Binti Musa

Localization is one of the important matters for Wireless Sensor Networks (WSN) because various applications are depending on exact sensor nodes position. The problem in localization is the gained low accuracy in estimation process. Thus, this research is intended to increase the accuracy by overcome the problem in the Global best Local Neighborhood Particle Swarm Optimization (GbLN-PSO) to gain high accuracy. To compass this problem, an Improved Global best Local Neighborhood Particle Swarm Optimization (IGbLN-PSO) algorithm has been proposed. In IGbLN-PSO algorithm, there are consists of two phases: Exploration phase and Exploitation phase. The neighbor particles population that scattered around the main particles, help in the searching process to estimate the node location more accurately and gained lesser computational time. Simulation results demonstrated that the proposed algorithm have competence result compared to PSO, GbLN-PSO and TLBO algorithms in terms of localization accuracy at 0.02%, 0.01% and 59.16%. Computational time result shows the proposed algorithm less computational time at 80.07%, 17.73% and 0.3% compared others.


2018 ◽  
Vol 10 (12) ◽  
pp. 4445 ◽  
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Baohong Lu ◽  
Changjun Qi

In view of the low efficiency of the particle swarm algorithm under multiple constraints of reservoir optimal operation, this paper introduces a particle swarm algorithm based on strongly constrained space. In the process of particle optimization, the algorithm eliminates the infeasible region that violates the water balance in order to reduce the influence of the unfeasible region on the particle evolution. In order to verify the effectiveness of the algorithm, it is applied to the calculation of reservoir optimal operation. Finally, this method is compared with the calculation results of the dynamic programming (DP) and particle swarm optimization (PSO) algorithm. The results show that: (1) the average computational time of strongly constrained particle swarm optimization (SCPSO) can be thought of as the same as the PSO algorithm and lesser than the DP algorithm under similar optimal value; and (2) the SCPSO algorithm has good performance in terms of finding near-optimal solutions, computational efficiency, and stability of optimization results. SCPSO not only improves the efficiency of particle evolution, but also avoids excessive improvement and affects the computational efficiency of the algorithm, which provides a convenient way for particle swarm optimization in reservoir optimal operation.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 603 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Cheng-Chieh Hsieh

In this study, the output characteristics of partial modules in a photovoltaic module array when subject to shading were first explored. Then, an improved particle swarm optimization (PSO) algorithm was applied to track the global maximum power point (MPP), with a multi-peak characteristic curve. The improved particle swarm optimization algorithm proposed, combined with the artificial bee colony (ABC) algorithm, was used to adjust the weighting, cognition learning factor, and social learning factor, and change the number of iterations to enhance the tracking performance of the MPP tracker. Finally, MATLAB software was used to carry out a simulation and prove the improved that the PSO algorithm successfully tracked the MPP in the photovoltaic array output curve with multiple peaks. Its tracking performance is far superior to the existing PSO algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yuyuan Zhang ◽  
Yongchuan Tang

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.


2013 ◽  
Vol 427-429 ◽  
pp. 1710-1713
Author(s):  
Xiang Tian ◽  
Yue Lin Gao

This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm, and aims at the shortcoming of PSO algorithm, which is easily plunging into the local minimum, then we proposes a new improved adaptive hybrid particle swarm optimization algorithm. It adopts dynamically changing inertia weight and variable learning factors, which is based on the mechanism of natural selection. The numerical results of classical functions illustrate that this hybrid algorithm improves global searching ability and the success rate.


2013 ◽  
Vol 394 ◽  
pp. 505-508 ◽  
Author(s):  
Guan Yu Zhang ◽  
Xiao Ming Wang ◽  
Rui Guo ◽  
Guo Qiang Wang

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.


Sign in / Sign up

Export Citation Format

Share Document