A Study on the Real Estate Price Forecast Model in the Midwest of China–Based on Provincial Panel Data Analysis

Author(s):  
Hongchang Mei ◽  
Hao Fang
2009 ◽  
Vol 35 (5) ◽  
pp. 118-132 ◽  
Author(s):  
John-John D’Argensio ◽  
Frédéric Laurin

2019 ◽  
Vol 21 (3) ◽  
pp. 1217-1227
Author(s):  
Young Joo Yoon ◽  
Eun Joo Kim ◽  
Jeong Il Kim

2021 ◽  
pp. 52-66
Author(s):  
Huang-Mei He ◽  
Yi Chen ◽  
Jia-Ying Xiao ◽  
Xue-Qing Chen ◽  
Zne-Jung Lee

China has carried out a large number of real estate market reforms that change the real estate market demand considerably. At the same time, the real estate price has soared in some cities and has surpassed the spending power of many ordinary people. As the real estate price has received widespread attention from society, it is important to understand what factors affect the real estate price. Therefore, we propose a data analysis method for finding out the influencing factors of real estate prices. The method performs data cleaning and conversion on the used data first. To discretize the real estate price, we use the mean ± standard deviation (SD), mean ± 0.5 SD, and mean ± 2 SD of the price and divide it into three categories as the output variable. Then, we establish the decision tree and random forest model for six different situations for comparison. When the data set is divided into training data (70%) and testing data (30%), it has the highest testing accuracy. In addition, by observing the importance of each input variable, it is found that the main influencing factors of real estate price are cost, interior decoration, location, and status. The results suggest that both the real estate industry and buyers should pay attention to these factors to adjust or purchase real estate.


2018 ◽  
Vol 10 (7) ◽  
pp. 38
Author(s):  
Min Tan ◽  
Yajie Bai

This paper investigates the impact of demographic structure, especially gender and marital status, on the price of regional real estate. This paper utilizes controlled-heteroskedasticity fixed-effect model for the empirical tests based on a panel data set of 30 Chinese provinces from 2011 to 2015. Empirical results show that the gender ratio in the provincial panel data does have a significant negative impact on the regional real estate prices, which implies that when the number of women in a region increases, the real estate price in this region tends to rise. The impact of marital status on the real estate price is not significant according to empirical results.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1421
Author(s):  
Gergo Pinter ◽  
Amir Mosavi ◽  
Imre Felde

Advancement of accurate models for predicting real estate price is of utmost importance for urban development and several critical economic functions. Due to the significant uncertainties and dynamic variables, modeling real estate has been studied as complex systems. In this study, a novel machine learning method is proposed to tackle real estate modeling complexity. Call detail records (CDR) provides excellent opportunities for in-depth investigation of the mobility characterization. This study explores the CDR potential for predicting the real estate price with the aid of artificial intelligence (AI). Several essential mobility entropy factors, including dweller entropy, dweller gyration, workers’ entropy, worker gyration, dwellers’ work distance, and workers’ home distance, are used as input variables. The prediction model is developed using the machine learning method of multi-layered perceptron (MLP) trained with the evolutionary algorithm of particle swarm optimization (PSO). Model performance is evaluated using mean square error (MSE), sustainability index (SI), and Willmott’s index (WI). The proposed model showed promising results revealing that the workers’ entropy and the dwellers’ work distances directly influence the real estate price. However, the dweller gyration, dweller entropy, workers’ gyration, and the workers’ home had a minimum effect on the price. Furthermore, it is shown that the flow of activities and entropy of mobility are often associated with the regions with lower real estate prices.


Author(s):  
Shady Kholdy ◽  
Ahmad Sohrabian

Capital gain expectation is known to be an important determinant of housing price hikes during the real estate booms. Empirically, however, specifying the way expectations about current and future economic variables are formed is a dilemma. Although it is reasonable to assume that economic fundamentals have a significant effect on the investors’ expectation about future gains, a number of housing market analysts claim that expectations of housing prices are extrapolative. This study attempts to investigate the mechanism by which investors’ capital gain expectations and psychology are shaped. The results suggest that housing prices are predictable with respect to capital gain expectations only when these expectations are formed by extrapolation of past price appreciations. Considering the large number of empirical evidence on housing market anomaly with respect to capital gain expectations, the results suggest that the extrapolative expectations can better explain the real estate price behavior than expectations that are formed by economic fundamentals.


Sign in / Sign up

Export Citation Format

Share Document