Efficacy of Biological Soil Amendments and Biocontrol Agents for Sustainable Rice and Maize Production

Author(s):  
Manoj Kaushal ◽  
Suhas P. Wani
Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
P Avato ◽  
M Argentieri ◽  
S Laquale ◽  
T D'Addabbo
Keyword(s):  

2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


2020 ◽  
pp. 1-8
Author(s):  
Beilei Wu ◽  
Beilei Wu ◽  
Mei Li ◽  
Xiaoli Chen ◽  
Xiliang Jiang ◽  
...  

Endophytes are increasingly investigated as biocontrol agents for agricultural production. The identification of new endophytes with high effectiveness against plant disease is very important. A total of 362 strains of endophytes, including fungi, bacteria, and actinomycete, were isolated from alfalfa (Medicago sativa L.) collected in Hebei, Inner Mongolia and Ningxia provinces of China. The three strains of endophytic bacteria (NA NX51R-5, NA NX90R-8, and NA NM1S-1) with strong biocontrol capability with >50% effectiveness were screened against the common alfalfa root rot pathogen Fusarium oxysporum F. sp. medicaginis in alfalfa seedling germination experiments on MS medium and pot experiments. Using phylogenetic analysis, the isolates of NA NM1S-1 and NA NX51R-5 were identified as Bacillus spp. by 16S rDNA, while NA NX90R-8 was found to be Pseudomonas sp.


2013 ◽  
Vol 21 (7) ◽  
pp. 810-816
Author(s):  
Wen-Jun DONG ◽  
Pei-Zhi XU ◽  
Ren-Zhi ZHANG ◽  
Xu HUANG ◽  
Hua-Ping ZHENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document