Taxi Travel Time Prediction Using Ensemble-Based Random Forest and Gradient Boosting Model

Author(s):  
Bharat Gupta ◽  
Shivam Awasthi ◽  
Rudraksha Gupta ◽  
Likhama Ram ◽  
Pramod Kumar ◽  
...  
2021 ◽  
Vol 13 (15) ◽  
pp. 8577
Author(s):  
Zhen Chen ◽  
Wei Fan

Travel time prediction plays a significant role in the traffic data analysis field as it helps in route planning and reducing traffic congestion. In this study, an XGBoost model is employed to predict freeway travel time using probe vehicle data. The effects of different parameters on model performance are investigated and discussed. The optimized model outputs are then compared with another well-known model (i.e., Gradient Boosting model). The comparison results indicate that the XGBoost model has considerable advantages in terms of both prediction accuracy and efficiency. The developed model and analysis results can greatly help the decision makers plan, operate, and manage a more efficient highway system.


2021 ◽  
Vol 13 (13) ◽  
pp. 7454
Author(s):  
Bo Qiu ◽  
Wei (David) Fan

Due to the increasing traffic volume in metropolitan areas, short-term travel time prediction (TTP) can be an important and useful tool for both travelers and traffic management. Accurate and reliable short-term travel time prediction can greatly help vehicle routing and congestion mitigation. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm using the available data. In this study, the travel time data was provided and collected from the Regional Integrated Transportation Information System (RITIS). Then, the travel times were predicted for short horizons (ranging from 15 to 60 min) on the selected freeway corridors by applying four different machine learning algorithms, which are Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Long Short-Term Memory neural network (LSTM). Many spatial and temporal characteristics that may affect travel time were used when developing the models. The performance of prediction accuracy and reliability are compared. Numerical results suggest that RF can achieve a better prediction performance result than any of the other methods not only in accuracy but also with stability.


2019 ◽  
Vol 24 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Che-Ming Chen ◽  
Chia-Ching Liang ◽  
Chih-Peng Chu

2020 ◽  
Author(s):  
Homa Taghipour ◽  
Amir Bahador Parsa ◽  
Abolfazl Mohammadian

Having access to accurate travel time is of great importance for both highway network users and traffic engineers. The travel time which is currently reported on several highways is estimated by employing naïve methods and using limited sources of data. This results in unreliable and inaccurate travel time prediction and could impose delay on travelers. Therefore, the main objective of this study is short-term prediction of travel time for highways using multiple data sources including loop detectors, probe vehicles, weather condition, network, accidents, road works, and special events in order to consider the effect of different factors on travel time. To this end, two machine learning methods, K-Nearest Neighbors and Random Forest, are employed. After applying data cleaning process on datasets and combining them, the models are trained to predict and compare short-term harmonic average speed as a representative of travel time for 5-minute prediction horizons in one hour ahead. The travel time is calculated as the ratio of the length of each link and the harmonic average speed for all reporting vehicles. Hence, a model is trained for each technique to predict travel time 5 minutes ahead, 10 minutes ahead, and all the way down to 60 minutes ahead. The results confirm satisfying performance of both models in short-term travel time prediction with slightly outperformance of Random Forest model. A feature importance and sensitivity analysis also applied for the Random Forest model, and traffic variables are found as the most effective variables in predicting the travel time.


Sign in / Sign up

Export Citation Format

Share Document