Global Stability of a Delayed Eco-Epidemiological Model with Holling Type III Functional Response

Author(s):  
Hongfang Bai ◽  
Rui Xu
2021 ◽  
pp. 4930-4952
Author(s):  
Wassan Hussein ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.


2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Peng Yang ◽  
Yuanshi Wang

This paper is devoted to the study of a new delayed eco-epidemiological model with infection-age structure and Holling type II functional response. Firstly, the disease transmission rate function among the predator population is treated as the piecewise function concerning the incubation period [Formula: see text] of the epidemic disease and the model is rewritten as an abstract nondensely defined Cauchy problem. Besides, the prerequisite which guarantees the presence of the coexistence equilibrium is achieved. Secondly, via utilizing the theory of integrated semigroup and the Hopf bifurcation theorem for semilinear equations with nondense domain, it is found that the model exhibits a Hopf bifurcation near the coexistence equilibrium, which suggests that this model has a nontrivial periodic solution that bifurcates from the coexistence equilibrium as the bifurcation parameter [Formula: see text] crosses the bifurcation critical value [Formula: see text]. That is, there is a continuous periodic oscillation phenomenon. Finally, some numerical simulations are shown to support and extend the analytical results and visualize the interesting phenomenon.


2014 ◽  
Vol 50 (No. 3) ◽  
pp. 145-150 ◽  
Author(s):  
F. Sohrabi ◽  
P. Shishehbor ◽  
M. Saber ◽  
M.S. Mosaddegh

Eretmocerus mundus Mercet is one of the key natural enemies of Bemisia tabaci (Gennadius). In this study, the sublethal effects of LC<sub>25</sub> of imidacloprid and field-recommended concentration of buprofezin on the functional response of E. mundus to different densities of second instar B. tabaci nymphs were evaluated. The results revealed a type III functional response in the control and imidacloprid treatment. The type III functional response was altered into a type II by buprofezin. Although imidacloprid did not alter the type of functional response of E. mundus compared to the control, it negatively affected the handling time and maximum attack rate of the parasitoid. Therefore, the use of this insecticide should be evaluated carefully in IPM programs.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhixiang Ju ◽  
Yuanfu Shao ◽  
Xiaolan Xie ◽  
Xiangmin Ma ◽  
Xianjia Fang

Based on the biological resource management of natural resources, a stage-structured predator-prey model with Holling type III functional response, birth pulse, and impulsive harvesting at different moments is proposed in this paper. By applying comparison theorem and some analysis techniques, the global attractivity of predator-extinction periodic solution and the permanence of this system are studied. At last, examples and numerical simulations are given to verify the validity of the main results.


Sign in / Sign up

Export Citation Format

Share Document