scholarly journals The The Dynamics of a Prey-Predator Model with Infectious Disease in Prey: Role of Media Coverage

2021 ◽  
pp. 4930-4952
Author(s):  
Wassan Hussein ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.

2020 ◽  
pp. 1146-1163
Author(s):  
Hiba Abdullah Ibrahim ◽  
Raid Kamel Naji

A prey-predator model with Michael Mentence type of predator harvesting and infectious disease in prey is studied. The existence, uniqueness and boundedness of the solution of the model are investigated. The dynamical behavior of the system is studied locally as well as globally. The persistence conditions of the system are established. Local bifurcation near each of the equilibrium points is investigated. Finally, numerical simulations are given to show our obtained analytical results.


2021 ◽  
pp. 981-996
Author(s):  
Walaa Madhat Alwan ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered.  All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.


1995 ◽  
Vol 03 (03) ◽  
pp. 889-902 ◽  
Author(s):  
URSULA FORYS

Some generalizations of Marchuk's model of an infectious disease with respect to the role of interleukins are presented in this paper. Basic properties of the models are studied. Results of numerical simulations with different coefficients corresponding to the different forms of the disease are shown.


2020 ◽  
Vol 15 ◽  
pp. 38
Author(s):  
M. R. Lemnaouar ◽  
M. Khalfaoui ◽  
Y. Louartassi ◽  
I. Tolaimate

In this paper, we propose a fractional-order prey-predator model with reserved area in the presence of the toxicity and competition. We prove different mathematical results like existence, uniqueness, non negativity and boundedness of the solution for our model. Further, we discuss the local and global stability of these equilibria. Finally, we perform numerical simulations to prove our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Wanlin Chen ◽  
Yuhua Lin

A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response is studied in this paper. A set of sufficient conditions which guarantee the persistence and global stability of the system are obtained, respectively. Our results show that if refuge is large enough then predator species will be driven to extinction due to the lack of enough food. Two examples together with their numerical simulations show the feasibility of the main results.


2005 ◽  
Vol 13 (04) ◽  
pp. 341-361 ◽  
Author(s):  
B. MUKHOPADHYAY ◽  
R. BHATTACHARYYA

We present and analyze an epidemiological model containing Susceptible (S(t)) and Infected (I(t)) populations. The incidence rate is assumed to be nonlinear in the infected fraction (Ip(t)) as well as the susceptible fraction (Sq(t)). The dynamical behavior of the system is investigated from the point of view of stability and bifurcation. To model the recovery time of infected populations, a recovery delay, both in distributed and discrete form is introduced. In all the cases, it is shown that the infected incidence fraction p plays a vital role in controlling the dynamical behavior of the system. Numerical simulations are performed to justify the analytical findings.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Raid Kamel Naji ◽  
Arkan N. Mustafa

This paper treats the dynamical behavior of eco-epidemiological model with nonlinear incidence rate. A Holling type II prey-predator model withSI-type of disease in prey has been proposed and analyzed. The existence, uniqueness, and boundedness of the solution of the system are studied. The local and global dynamical behaviors are investigated. The conditions, which guarantee the occurring of Hopf bifurcation of the system, are established. Finally, further investigations for the global dynamics of the proposed system are carried out with the help of numerical simulations.


2008 ◽  
Vol 01 (01) ◽  
pp. 65-74 ◽  
Author(s):  
YIPING LIU ◽  
JING-AN CUI

In this paper, we give a compartment model to discuss the influence of media coverage to the spreading and controlling of infectious disease in a given region. The model exhibits two equilibria: a disease-free and a unique endemic equilibrium. Stability analysis of the models shows that the disease-free equilibrium is globally asymptotically stable if the reproduction number (ℝ0), which depends on parameters, is less than unity. But if ℝ0 > 1, it is shown that a unique endemic equilibrium appears, which is asymptotically stable. On a special case, the endemic equilibrium is globally stable. We discuss the role of media coverage on the spreading based on the theory results.


2016 ◽  
Vol 13 (4) ◽  
pp. 364-369
Author(s):  
V. Madhusudanan ◽  
S. Vijaya

Purpose This paper aims to propose and analyse a two-prey–one-predator system with mixed functional response. Design/methodology/approach The predator exhibits Holling type IV functional response to one prey and Holling type I response to other. The occurrence of various positive equilibrium points with feasibility conditions are determined. The local and global stability of interior equilibrium points are examined. The boundedness of system is analysed. The sufficient conditions for persistence of the system is obtained by using Bendixson–Dulac criteria. Numerical simulations are carried out to illustrate the analytical findings. Findings The authors have derived the local and global stability condition of interior equilibrium of the system. Originality/value The authors observe that the critical values of some system parameter undergo Hopf bifurcation around some selective equilibrium. Hence, numerical simulations reveal the condition for the system to be stable and oscillatory.


Sign in / Sign up

Export Citation Format

Share Document