CVA for Discretely Monitored Barrier Option Under Stochastic Jump Model

2018 ◽  
pp. 99-116 ◽  
Author(s):  
Yaqin Feng ◽  
Min Wang
2019 ◽  
Vol 37 (1) ◽  
pp. 134-142
Author(s):  
Alberto Bueno-Guerrero

Purpose This paper aims to study the conditions for the hedging portfolio of any contingent claim on bonds to have no bank account part. Design/methodology/approach Hedging and Malliavin calculus techniques recently developed under a stochastic string framework are applied. Findings A necessary and sufficient condition for the hedging portfolio to have no bank account part is found. This condition is applied to a barrier option, and an example of a contingent claim whose hedging portfolio has a bank account part different from zero is provided. Originality/value To the best of the authors’ knowledge, this is the first time that this issue has been addressed in the literature.


Author(s):  
Luca Vincenzo Ballestra

AbstractWe show that the performances of the finite difference method for double barrier option pricing can be strongly enhanced by applying both a repeated Richardson extrapolation technique and a mesh optimization procedure. In particular, first we construct a space mesh that is uniform and aligned with the discontinuity points of the solution being sought. This is accomplished by means of a suitable transformation of coordinates, which involves some parameters that are implicitly defined and whose existence and uniqueness is theoretically established. Then, a finite difference scheme employing repeated Richardson extrapolation in both space and time is developed. The overall approach exhibits high efficacy: barrier option prices can be computed with accuracy close to the machine precision in less than one second. The numerical simulations also reveal that the improvement over existing methods is due to the combination of the mesh optimization and the repeated Richardson extrapolation.


2007 ◽  
Vol 75 (11) ◽  
Author(s):  
Magdalena A. Załuska-Kotur ◽  
Stanislaw Krukowski ◽  
Andrzej Łusakowski ◽  
Łukasz A. Turski
Keyword(s):  

2013 ◽  
Vol 12 (01) ◽  
pp. 1350004 ◽  
Author(s):  
BOUNGHUN BOCK ◽  
SUN-YONG CHOI ◽  
JEONG-HOON KIM

This paper considers a hybrid risky asset price model given by a constant elasticity of variance multiplied by a stochastic volatility factor. A multiscale analysis leads to an asymptotic pricing formula for both European vanilla option and a Barrier option near the zero elasticity of variance. The accuracy of the approximation is provided in a rigorous manner. A numerical experiment for implied volatilities shows that the hybrid model improves some of the well-known models in view of fitting the data for different maturities.


2012 ◽  
Vol 04 (03) ◽  
pp. 89-93 ◽  
Author(s):  
Deng Ding ◽  
Zuoqiu Weng ◽  
Jingya Zhao

Sign in / Sign up

Export Citation Format

Share Document