Design and Implementation of Intelligent System to Detect Malicious Facebook Posts Using Support Vector Machine (SVM)

Author(s):  
Sasikumar Gurumurthy ◽  
C. Sushama ◽  
M. Ramu ◽  
K. Sai Nikhitha
2014 ◽  
Vol 493 ◽  
pp. 337-342 ◽  
Author(s):  
Achmad Widodo ◽  
I. Haryanto ◽  
T. Prahasto

This paper deals with implementation of intelligent system for fault diagnostics of rolling element bearing. In this work, the proposed intelligent system was basically created using support vector machine (SVM) due to its excellent performance in classification task. Moreover, SVM was modified by introducing wavelet function as kernel for mapping input data into feature space. Input data were vibration signals acquired from bearings through standard data acquisition process. Statistical features were then calculated from bearing signals, and extraction of salient features was conducted using component analysis. Results of fault diagnostics are shown by observing classification of bearing conditions which gives plausible accuracy in testing of the proposed system.


Author(s):  
Hiroyuki Nishiyama ◽  
Fumio Mizoguchi

In this study, the authors design a cognitive tool to detect malicious images using a smart phone. This tool can learn shot images taken with the camera of a smart phone and automatically classify the new image as a malicious image in the smart phone. To develop the learning and classifier tool, the authors implement an image analysis function and a learning and classifier function using a support vector machine (SVM) with the smart phone. With this tool, the user can collect image data with the camera of a smart phone, create learning data, and classify the new image data according to the learning data in the smart phone. In this study, the authors apply this tool to a user interface of a cosmetics recommendation service system and demonstrate its effectiveness by in reducing the load of the diagnosis server in this service and improving the user service.


2007 ◽  
Author(s):  
J. Gimeno ◽  
H. Lamela ◽  
M. Jiménez ◽  
M. González ◽  
M. Ruiz-Llata

2016 ◽  
Vol 24 (4) ◽  
pp. 379-393 ◽  
Author(s):  
Mehrbakhsh Nilashi ◽  
Othman Bin Ibrahim ◽  
Abbas Mardani ◽  
Ali Ahani ◽  
Ahmad Jusoh

As a chronic disease, diabetes mellitus has emerged as a worldwide epidemic. The aim of this study is to classify diabetes disease by developing an intelligence system using machine learning techniques. Our method is developed through clustering, noise removal and classification approaches. Accordingly, we use expectation maximization, principal component analysis and support vector machine for clustering, noise removal and classification tasks, respectively. We also develop the proposed method for incremental situation by applying the incremental principal component analysis and incremental support vector machine for incremental learning of data. Experimental results on Pima Indian Diabetes dataset show that proposed method remarkably improves the accuracy of prediction and reduces computation time in relation to the non-incremental approaches. The hybrid intelligent system can assist medical practitioners in the healthcare practice as a decision support system.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
E. Chatzimichail ◽  
E. Paraskakis ◽  
M. Sitzimi ◽  
A. Rigas

Objectives. In this study a new method for asthma outcome prediction, which is based on Principal Component Analysis and Least Square Support Vector Machine Classifier, is presented. Most of the asthma cases appear during the first years of life. Thus, the early identification of young children being at high risk of developing persistent symptoms of the disease throughout childhood is an important public health priority.Methods. The proposed intelligent system consists of three stages. At the first stage, Principal Component Analysis is used for feature extraction and dimension reduction. At the second stage, the pattern classification is achieved by using Least Square Support Vector Machine Classifier. Finally, at the third stage the performance evaluation of the system is estimated by using classification accuracy and 10-fold cross-validation.Results. The proposed prediction system can be used in asthma outcome prediction with 95.54 % success as shown in the experimental results.Conclusions. This study indicates that the proposed system is a potentially useful decision support tool for predicting asthma outcome and that some risk factors enhance its predictive ability.


Sign in / Sign up

Export Citation Format

Share Document