Comprehensive Analysis of Personalized Web Search Engines Through Information Retrieval Feedback System and User Profiling

Author(s):  
Kamlesh Makvana ◽  
Jay Patel ◽  
Parth Shah ◽  
Amit Thakkar
Author(s):  
Wen-Chen Hu ◽  
Jyh-Haw Yeh

The World Wide Web now holds more than 800 million pages covering almost all issues. The Web’s fast growing size and lack of structural style present a new challenge for information retrieval. Numerous search technologies have been applied to Web search engines; however, the dominant search method has yet to be identified. This chapter provides an overview of the existing technologies for Web search engines and classifies them into six categories: 1) hyperlink exploration, 2) information retrieval, 3) metasearches, 4) SQL approaches, 5) content-based multimedia searches, and 6) others. At the end of this chapter, a comparative study of major commercial and experimental search engines is presented, and some future research directions for Web search engines are suggested.


Author(s):  
Daniel Crabtree

Web search engines help users find relevant web pages by returning a result set containing the pages that best match the user’s query. When the identified pages have low relevance, the query must be refined to capture the search goal more effectively. However, finding appropriate refinement terms is difficult and time consuming for users, so researchers developed query expansion approaches to identify refinement terms automatically. There are two broad approaches to query expansion, automatic query expansion (AQE) and interactive query expansion (IQE) (Ruthven et al., 2003). AQE has no user involvement, which is simpler for the user, but limits its performance. IQE has user involvement, which is more complex for the user, but means it can tackle more problems such as ambiguous queries. Searches fail by finding too many irrelevant pages (low precision) or by finding too few relevant pages (low recall). AQE has a long history in the field of information retrieval, where the focus has been on improving recall (Velez et al., 1997). Unfortunately, AQE often decreased precision as the terms used to expand a query often changed the query’s meaning (Croft and Harper (1979) identified this effect and named it query drift). The problem is that users typically consider just the first few results (Jansen et al., 2005), which makes precision vital to web search performance. In contrast, IQE has historically balanced precision and recall, leading to an earlier uptake within web search. However, like AQE, the precision of IQE approaches needs improvement. Most recently, approaches have started to improve precision by incorporating semantic knowledge.


Author(s):  
Wen-Chen Hu ◽  
Hung-Jen Yang ◽  
Jyh-haw Yeh ◽  
Chung-wei Lee

The World Wide Web now holds more than six billion pages covering almost all daily issues. The Web’s fast growing size and lack of structural style present a new challenge for information retrieval (Lawrence & Giles, 1999a). Traditional search techniques are based on users typing in search keywords which the search services can then use to locate the desired Web pages. However, this approach normally retrieves too many documents, of which only a small fraction are relevant to the users’ needs. Furthermore, the most relevant documents do not necessarily appear at the top of the query output list. Numerous search technologies have been applied to Web search engines; however, the dominant search methods have yet to be identified. This article provides an overview of the existing technologies for Web search engines and classifies them into six categories: i) hyperlink exploration, ii) information retrieval, iii) metasearches, iv) SQL approaches, v) content-based multimedia searches, and vi) others. At the end of this article, a comparative study of major commercial and experimental search engines is presented, and some future research directions for Web search engines are suggested. Related Web search technology review can also be found in Arasu, Cho, Garcia-Molina, Paepcke, and Raghavan (2001) and Lawrence and Giles (1999b).


Author(s):  
Yasufumi Takama ◽  
◽  
Yanjun Zhu ◽  
Shogo Kori ◽  
Koichi Yamaguchi ◽  
...  

The context search engine has been studied for answering trend-related queries. As trend information is obtained from temporal data, which is common in many applications, the context engine is expected to be available regardless of domains. When using existing search engines, it is supposed that users submit a series of queries based on search intention. Therefore, search functions of the context search engine should be designed based on the user’s potential search intention. To analyze user’s behavior in information retrieval, this paper conducted experiments using existing Web search engines. The experimental result is analyzed, based on which the design of a context search engine is described. As another contribution of this paper, new types of temporal variations which can be used to specify queries of the context search engine are also proposed. The results of user experiments confirmed the usability of the proposed temporal variations.


Author(s):  
Lu Zhang ◽  
Bernard J. Jansen ◽  
Anna S. Mattila

Sign in / Sign up

Export Citation Format

Share Document