Design of a Microfluidic Chip for Separating Rice Disease Spores

Author(s):  
Gangshan Wu ◽  
Chiyuan Chen ◽  
Ning Yang ◽  
Haifang Hui ◽  
Peifeng Xu
Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 289 ◽  
Author(s):  
Yang ◽  
Chen ◽  
Li ◽  
Li ◽  
Zou ◽  
...  

Crop diseases cause great harm to food security, 90% of these are caused by fungal spores. This paper proposes a crop diseases spore detection method, based on the lensfree diffraction fingerprint and microfluidic chip. The spore diffraction images are obtained by a designed large field of view lensless diffraction detection platform which contains the spore enrichment microfluidic chip and lensless imaging module. By using the microfluidic chip to enrich and isolate spores in advance, the required particles can be captured in the chip enrichment area, and other impurities can be filtered to reduce the interference of impurities on spore detection. The light source emits partially coherent light and irradiates the target to generate diffraction fingerprints, which can be used to distinguish spores and impurities. According to the theoretical analysis, two parameters, Peak to Center ratio (PCR) and Peak to Valley ratio (PVR), are found to quantify these spores. The correlation coefficient between the detection results of rice blast spores by the constructed device and the results of microscopic artificial identification was up to 0.99, and the average error rate of the proposed device was only 5.91%. The size of the device is only 4 cm × 4 cm × 5 cm, and the cost is less than $150, which is one thousandth of the existing equipment. Therefore, it may be widely used as an early detection method for crop disease caused by spores.


2020 ◽  
Vol 28 (11) ◽  
pp. 2488-2496
Author(s):  
Hong WANG ◽  
◽  
Jie ZHENG ◽  
Yan-peng YAN ◽  
Song WANG ◽  
...  

2013 ◽  
Vol 40 (11) ◽  
pp. 1668-1673
Author(s):  
Min DU ◽  
Xiong-Ying YE ◽  
Jin-Yang FENG ◽  
Zeng-Shuai MA ◽  
Zhao-Ying ZHOU

2013 ◽  
Vol 30 (11) ◽  
pp. 1127-1132 ◽  
Author(s):  
Peng XIAO ◽  
Dalei LI ◽  
Yan MAN ◽  
Lina GENG ◽  
Xuefei LU ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 7474-7481 ◽  
Author(s):  
Waseem Asghar ◽  
Mazhar Sher ◽  
Nida S. Khan ◽  
Jatin M. Vyas ◽  
Utkan Demirci

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 177 ◽  
Author(s):  
Zengming Zhang ◽  
Shuhao Zhao ◽  
Fei Hu ◽  
Guangpu Yang ◽  
Juan Li ◽  
...  

The sensitive quantification of low-abundance nucleic acids holds importance for a range of clinical applications and biological studies. In this study, we describe a facile microfluidic chip for absolute DNA quantifications based on the digital loop-mediated isothermal amplification (digital LAMP) method. This microfluidic chip integrates a cross-flow channel for droplet generation with a micro-cavity for droplet tiling. DNA templates in the LAMP reagent were divided into ~20,000 water-in-oil droplets at the cross-flow channel. The droplets were then tiled in the micro-cavity for isothermal amplification and fluorescent detection. Different from the existing polydimethylsiloxane (PDMS) microfluidic chips, this study incorporates gold nanoparticles (AuNPs) into PDMS substrate through silica coating and dodecanol modification. The digital LAMP chip prepared by AuNPs-PDMS combines the benefits of the microstructure manufacturing performance of PDMS with the light-to-heat conversion advantages of AuNPs. Upon illumination with a near infrared (NIR) LED, the droplets were stably and efficiently heated by the AuNPs in PDMS. We further introduce an integrated device with a NIR heating unit and a fluorescent detection unit. The system could detect HBV (hepatitis B virus)-DNA at a concentration of 1 × 101 to 1 × 104 copies/μL. The LED-driven digital LAMP chip and the integrated device; therefore, demonstrate high accuracy and excellent performance for the absolute quantification of low-abundance nucleic acids, showing the advantages of integration, miniaturization, cost, and power consumption.


2011 ◽  
Vol 5 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yuwadee Boonyasit ◽  
Thitima Maturos ◽  
Assawapong Sappat ◽  
Apichai Jomphoak ◽  
Adisorn Tuantranont ◽  
...  

Author(s):  
Sandy Morais ◽  
Gérald Clisson ◽  
Teresa Fina Mastropietro ◽  
Maria L. Briuglia ◽  
Joop H. ter Horst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document