iPS Cell Technology for Dissecting Cancer Epigenetics

Author(s):  
Hirofumi Shibata ◽  
Yasuhiro Yamada
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Henry Joutsijoki ◽  
Markus Haponen ◽  
Jyrki Rasku ◽  
Katriina Aalto-Setälä ◽  
Martti Juhola

The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient’s cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using ak-NN classifier showing improved accuracy compared to earlier studies.


2010 ◽  
Vol 104 (07) ◽  
pp. 39-44 ◽  
Author(s):  
Qizhou Lian ◽  
Yenyen Chow ◽  
Miguel Esteban ◽  
Duanqing Pei ◽  
Hung-Fat Tse

SummaryRecent advances in stem cell biology have transformed the understanding of cell physiology and developmental biology such that it can now play a more prominent role in the clinical application of stem cell and regenerative medicine. Success in the generation of human induced pluripotent stem cells (iPS) as well as related emerging technology on the iPS platform provide great promise in the development of regenerative medicine. Human iPS cells show almost identical properties to human embryonic stem cells (ESC) in pluripotency, but avoid many of their limitations of use. In addition, investigations into reprogramming of somatic cells to pluripotent stem cells facilitate a deeper understanding of human stem cell biology. The iPS cell technology has offered a unique platform for studying the pathogenesis of human disease, pharmacological and toxicological testing, and cell-based therapy. Nevertheless, significant challenges remain to be overcome before the promise of human iPS cell technology can be realised.


Sign in / Sign up

Export Citation Format

Share Document