Automatic Generation Control and Load Frequency Control: A Comprehensive Review

Author(s):  
Krishan Arora ◽  
Ashok Kumar ◽  
Vikram Kumar Kamboj
2010 ◽  
Vol 2 (2) ◽  
pp. 285-293 ◽  
Author(s):  
M. R. I. Sheikh ◽  
R. Takahashi ◽  
J. Tamura

Since superconducting magnetic energy storage (SMES) unit with a self-commutated converter is capable of controlling both the active and reactive powers simultaneously and quickly, increasing attention has been focused recently on power system stabilization by SMES control. This study presents the effects of novel control strategies of self-tuned fuzzy proportional integral (FPI) controller and fuzzy frequency (FF) controller associated with the automatic generation control (AGC) including SMES unit. The effects of the self-tuning configuration with FPI controller in AGC is also compared with that of FF controlled AGC on SMES control. The simulation results show that both self tuning control schemes of AGC are very effective in damping out of the oscillations caused by load disturbances and it is also seen that the FF controlled AGC with SMES perform better primary frequency control compared to FPI controlled AGC with SMES. Keywords: Load frequency control; Single area power system; FPI controller; FF controller; SMES unit. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.    DOI: 10.3329/jsr.v2i2.3063               J. Sci. Res. 2 (2), 285-293 (2010) 


Author(s):  
Abdullahi Bala Kunya ◽  
Mehmet Argin ◽  
Yusuf Jibril ◽  
Yusuf Abubakar Shaaban

Abstract Background Automatic generation control (AGC) of multi-area interconnected power system (IPS) is often designed with negligible cross-coupling between the load frequency control (LFC) and automatic voltage regulation (AVR) loops. This is because the AVR loop is considerably faster than that of LFC. However, with the introduction of slow optimal control action on the AVR, positive damping effect can be achieved on the LFC loop thereby improving the frequency control. In this paper, LFC synchronized with AVR in three-area IPS is proposed. Model predictive controller (MPC) configured in a dense distributed pattern, due to its online set-point tacking is used as the supplementary controller. The dynamics of the IPS subjected to multi-area step and random load disturbances are studied. The efficacy of the developed scheme is ascertained by simulating the disturbed system in MATLAB/Simulink. Results Based on the comparative analysis on the system responses, it is established that by cross-coupling the LFC loop with AVR, reductions of 66.45% and 59.09% in the frequency and tie-line power maximum deviations respectively are observed, while the respective settling times are found to be reduced by 29.68% and 22.77% when compared with the uncoordinated control scheme. In addition, the standard deviation and variance of the integral time absolute error of the system’s responses have reduced by 23.21% and 20.83% respectively compared to those obtained in a similar study. Conclusions The reduction in the maximum deviations and settling times in the system states indicates that introducing the voltage control via AVR loop has improved the frequency control significantly. While the lower standard deviation and variance of the integral time absolute error signify improvement in the robustness of the developed algorithm. However, this improvement is at the detriment of the controller size and computational complexity. In the uncoordinated control scheme, the control vector is one-dimensional, while in the coordinated scheme, the control vector is two-dimensional for each CA.


2018 ◽  
Vol 8 (10) ◽  
pp. 1848 ◽  
Author(s):  
Arman Oshnoei ◽  
Rahmat Khezri ◽  
SM Muyeen ◽  
Frede Blaabjerg

Wind farms can contribute to ancillary services to the power system, by advancing and adopting new control techniques in existing, and also in new, wind turbine generator systems. One of the most important aspects of ancillary service related to wind farms is frequency regulation, which is partitioned into inertial response, primary control, and supplementary control or automatic generation control (AGC). The contribution of wind farms for the first two is well addressed in literature; however, the AGC and its associated controls require more attention. In this paper, in the first step, the contribution of wind farms in supplementary/load frequency control of AGC is overviewed. As second step, a fractional order proportional-integral-differential (FOPID) controller is proposed to control the governor speed of wind turbine to contribute to the AGC. The performance of FOPID controller is compared with classic proportional-integral-differential (PID) controller, to demonstrate the efficacy of the proposed control method in the frequency regulation of a two-area power system. Furthermore, the effect of penetration level of wind farms on the load frequency control is analyzed.


2019 ◽  
Vol 8 (4) ◽  
pp. 2390-2395

The Load Frequency Control (LFC) problem in a smart grid is presented in this paper. For the visualization of the problem, an isolated two area restructured power system contains thermal-thermal non-reheat unit with distributed wind energy system considered. In the study presented here efforts have been put to visualize and realize the LFC problem because of sudden load variation and uneven wind power in the smart grid. The generators are assumed working in Automatic Generation Control (AGC) mode under the bilateral market contract to meet the load demand. For visualization of load frequency control problem with local load variation of +20% and wind power which further add in sudden load deviation has been considered. Generators running under AGC mode are facing the cyclic and random load frequency fluctuations due to this sudden load variation and grid-connected wind power. In this way to enhance the solution the grid-connected aggregated EV batteries are used in distribution areas in the simulation with charging and discharging mode as distributed battery energy storage. The effect of grid-connected EV has studied for the improvement in stability as well as system dynamic response. From the results it is observed that the peak overshoots and settling time in load frequency fluctuations have minimized during the sudden load variation and wind power fluctuations


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Lei Xi ◽  
Yudan Li ◽  
Yuehua Huang ◽  
Ling Lu ◽  
Jianfeng Chen

To achieve automatic generation control coordination in the islanded smart grid environment resulted from the increasing penetration of renewable energy, a novel ecological population cooperative control (EPCC) strategy is proposed in this paper. The proposed EPCC, based on the new win-loss criterion and the time tunnel idea, can compute the win-loss criterion accurately and converge to Nash equilibrium rapidly. Moreover, based on a multiagent system stochastic consensus game (MAS-SCG) framework, a frequent information exchange between agents (AGC units) is implemented to rapidly calculate optimal power command, which achieves the optimal cooperative control of the islanded smart grid. The PDWoLF-PHC(λ), WPH strategy (wolf pack hunting), DWoLF-PHC(λ), Q(λ)-learning, and Q-learning are implemented into the islanded smart grid model for the control performance analysis. Two case studies have been done, including the modified IEEE standard two-area load frequency control power system model and the islanded smart grid model with distributed energy and microgrids. The effectiveness, stronger robustness, and better adaptability in the islanded smart grid of the proposed method are verified. Compared with five other smart ones, EPCC can improve convergence speed than that of others by nearly 33.9%–50.1% and the qualification rate of frequency assessment effectively by 2%–64% and can reduce power generation cost.


Sign in / Sign up

Export Citation Format

Share Document