Accuracy Assessment and Improvement of GNSS Precise Point Positioning Under Ionospheric Scintillation

Author(s):  
Zhenlong Fang ◽  
Wenfeng Nie ◽  
Tianhe Xu ◽  
Zhizhao Liu ◽  
Shiwei Yu
2018 ◽  
Vol 8 ◽  
pp. A15 ◽  
Author(s):  
Haroldo Antonio Marques ◽  
Heloísa Alves Silva Marques ◽  
Marcio Aquino ◽  
Sreeja Vadakke Veettil ◽  
João Francisco Galera Monico

GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.


GPS Solutions ◽  
2018 ◽  
Vol 22 (3) ◽  
Author(s):  
Xiaomin Luo ◽  
Yidong Lou ◽  
Qinqin Xiao ◽  
Shengfeng Gu ◽  
Biyan Chen ◽  
...  

2012 ◽  
Vol 121 (4) ◽  
pp. 989-999 ◽  
Author(s):  
LI WEI ◽  
CHENG PENGFEI ◽  
BEI JINZHONG ◽  
WEN HANJIANG ◽  
WANG HUA

2016 ◽  
Vol 22 (3) ◽  
pp. 405-419 ◽  
Author(s):  
Adem G. Hayal ◽  
D. Ugur Sanli

The accuracy of GPS precise point positioning (PPP) was previously modelled as a function of the observing session duration T. The NASA, JPL's software GIPSY OASIS II (GOA-II) along with the legacy products was used to process the GPS data. The original accuracy model is not applicable anymore because JPL started releasing its products using new modelling and analysis strategies as of August 2007, and the legacy products are no longer available. The developments mainly comprise the new orbit and clock determination strategy, second order ionosphere modelling, and single station ambiguity resolution. Previously, the PPP accuracy was studied using v 4.0 of the GOA-II. The accuracy model showed coarser results compared to that of the relative positioning. Here, we processed the data of the International GNSS Service (IGS) stations to refine the accuracy of GOA-II PPP from version 6.3. Considering the above changes we refined the accuracy of PPP. First we modified the previous model used for the accuracy assessment. Then we tested out this model using straightforward polynomial and logarithmic models. The tests indicate the previous formulation still satisfactorily models the accuracy using refined coefficient values Sn = 7.8 mm , Se = 6.8 mm , Sv = 29.9 mm for T ≥ 2 h.


2020 ◽  
Vol 94 (2) ◽  
Author(s):  
Sreeja Vadakke Veettil ◽  
Marcio Aquino ◽  
Haroldo Antonio Marques ◽  
Alison Moraes

2019 ◽  
Vol 11 (21) ◽  
pp. 2551
Author(s):  
Xiaomin Luo ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Weiwei Song

Because of the special design of BeiDou navigation satellite system (BDS) constellation, the effects of ionospheric scintillation on operational BDS generally are more serious than on the global positioning system (GPS). As BDS is currently providing global services, it is increasingly important to seek strategies to mitigate the scintillation effects on BDS navigation and positioning services. In this study, an improved cycle-slip threshold model is proposed to decrease the high false-alarm rate of cycle-slips under scintillation conditions, thus avoiding the frequent unnecessary ambiguity resets in BDS precise point positioning (PPP) solution. We use one-year (from 23 March 2015 to 23 March 2016) BDS dataset from Hong Kong Sha Tin (HKST) station (22.4°N, 114.2°E; geomagnetic latitude: 15.4°N) to model the cycle-slip threshold and try to make it suitable for three types of BDS satellites and multiple scintillation levels. The availability of our mitigation strategy is validated by using three months (from 1 September 2015 to 30 November 2015) BDS dataset collected at 10 global navigation satellite system (GNSS) stations in Hong Kong. Positioning results demonstrate that our mitigated BDS PPP can prevent the sudden fluctuations of positioning errors induced by the ionospheric scintillation. Statistical results of BDS PPP experiments show that the mitigated solution can maintain an accuracy of about 0.08 m and 0.10 m in the horizontal and vertical components, respectively. Compared with standard BDS PPP, the accuracy of mitigated PPP can be improved by approximately 24.1%, 38.2%, and 47.9% in the east, north, and up directions, respectively. Our study demonstrates that considering different scintillation levels to establish appropriate cycle-slip threshold model in PPP processing can efficiently mitigate the ionospheric scintillation effects on BDS PPP.


Sign in / Sign up

Export Citation Format

Share Document