cycle slip
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 79)

H-INDEX

19
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6930
Author(s):  
Chenyao Xiong ◽  
Qingsong Li ◽  
Dingjie Wang ◽  
Jie Wu

Appropriate cycle-slip and measurement-error models are essential for BeiDou carrier-phase-based integrity risk calculation. To establish the receiver’s measurement-error model, an accurate position reference of the GNSS antenna is fundamental for calculating the measurement error. However, it is still a challenge to acquire position references for dynamic BeiDou receivers, resulting in improper GNSS measurement-error models and unreliable integrity monitoring. This paper proposes an improved precise relative positioning scheme by adopting multi-antenna trajectory constraints for dynamic BeiDou receivers. The dynamic experiments show an obvious decline of 78.7%, at most, in the positioning failure rate of the proposed method, as compared with the traditional method. The position solutions obtained from the proposed approach are used as the reference to analyze the cycle-slip and measurement-error characteristics of the dynamic receiver. The field test results indicate that the cycle-slip rate decreases with the increase of signal-to-noise ratio (SNR), and cycle slipping obeys a positively skewed distribution that could be fitted by the Gaussian mixture model (GMM). On the other hand, the standard deviation of the carrier-phase measurement error is inversely proportional to SNR, and its distribution is characteristically fat-tailed, which could be fitted by the bi-normal model.


2021 ◽  
Vol 13 (19) ◽  
pp. 4020
Author(s):  
Wenju Fu ◽  
Lei Wang ◽  
Ruizhi Chen ◽  
Haitao Zhou ◽  
Tao Li ◽  
...  

Kinematic orbit determination (KOD) of low earth orbit (LEO) satellites only using single-frequency global navigation satellite system (GNSS) data is a suitable solution for space applications demanding meter-level orbit precision. For some small LEO satellites with the sun-pointing attitude mode, the rotation of the GNSS antenna radiation pattern changes the observation noise characteristics. Since the rotation angle information of the antenna plane may not be available for most low-cost missions, the true elevation cannot be computed and a general elevation-dependent weighting model remains invalid for the onboard GNSS observations. Furthermore, the low-stability GNSS receiver clock oscillator of the LEO satellite at high speeds makes single-frequency cycle slip detection ineffective and difficult since the clock steering events occur frequently. In this study, we investigated the improved KOD strategy to improve the performance of orbit solution using single-frequency GPS and BeiDou navigation satellite system (BDS) observations collected from the Luojia-1A satellite. The weighting model based on exponential function and signal strength is proposed according to the analysis of satellite attitude impact, and a joint single-frequency detection algorithm of receiver clock jump and cycle slip is investigated as well. Based on the GPS/BDS-combined KOD results, it is demonstrated that the clock jump and cycle slip can be properly detected and observations can be effectively utilized with the proposed weighting model considering satellite attitude, which significantly improves the availability and accuracy of orbit solution. The number of available epochs is increased by 12.9% benefitting from this strategy. The orbital root mean square (RMS) precision improvements in the radial, along-track, and cross-track directions are 22.1%, 16.4%, and 6.5%, respectively. Combining BDS observations also contributes to orbit precision improvement, which reaches up to 28.8%.


Author(s):  
Fan Zhang ◽  
Hongzhou Chai ◽  
Guorui Xiao ◽  
Changjian Liu ◽  
Linyang Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (18) ◽  
pp. 3642
Author(s):  
Wei Ding ◽  
Wei Sun ◽  
Yang Gao ◽  
Jiaji Wu

Attitude and heading estimation methods using the global navigation satellite system (GNSS) are generally based on multi-antenna deployment, where the installation space and system cost increase with the increase in the number of antennas. Since the single-antenna receiver is still the major choice of the mass market, we focus on precise and reliable heading and pitch estimation using a low-cost GNSS receiver. Carrier phase observations are precise but have an ambiguity problem. A single difference between consecutive epochs can eliminate ambiguity and reduce the measurement errors. In this work, a measurement model based on the time-differenced carrier phases (TDCPs) is utilized to estimate the precise delta position of the antenna between two consecutive epochs. Then, considering the motion constraint, the heading and pitch angles of a moving land vehicle can be determined by the components of the estimated receiver delta position. A threshold on the length of the delta position is selected to avoid large errors in static periods. To improve the reliability of the algorithm, the Doppler-aided cycle slip detection method is applied to exclude carrier phases with possible cycle slips. A real vehicular dynamic experiment using a low-cost, single-frequency GNSS receiver is conducted to evaluate the proposed algorithm. The experimental results show that the proposed algorithm is capable of providing precise vehicular heading and pitch estimates, with both the root mean square errors being better than 1.5°. This also indicates that the cycle slip exclusion is indispensable to avoid unexpected large errors.


2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.


Sign in / Sign up

Export Citation Format

Share Document