Experimental Investigation on an Evaporative Cooling System for the Environmental Control in Archaeology Museum

Author(s):  
Bin Chang ◽  
Xilian Luo ◽  
Yanqian Shen ◽  
Juan Li ◽  
Zhaolin Gu
2021 ◽  
Vol 27 (4) ◽  
pp. 1-15
Author(s):  
Abbas Magid Taleb ◽  
Mohammed Abdulraouf Nima

An experimental study was carried out for an evaporative cooling system in order to investigate the effect of using an aluminum pad coated with fabric polyester. In the present work, it was considered to use a new different type of cooling medium and test its performance during the change in the wet-bulb temperature and dry-bulb temperature of the supply air outside of the pad, the relative humidity of the supply air, the amount of air supplied (300-600) CFM and also the change of the amount of circulated water (1.75, 2.5, 4.5) liter per minute. A decrease in the WBT of the air was obtained, whereas the WBT of the air entering the pad was 26.5 . In contrast, the WBT of the outside air had reached 23  even though evaporative cooling is an adiabatic process which makes the WBT of the air that comes out of the pad is equal to the entering air WBT. The decrease in DBT is by changing the amount of air and water passing through the aluminum pad, whereas the DBT of the air entering the pad was 45 , while the DBT of the outside air had reached 29 . Also, an essential thing was obtained as this rise in the relative humidity of the air is very small 57%RH compared to the conventional pads, and this gives a positive impression as the air supplied from this pad has less moisture and its ability to carry moisture is much higher than that of air supplied from other pads. This gives a positive impression because the air supplied from this pad has lower humidity and its ability to hold moisture much higher than the air supplied from other traditional pads.


2017 ◽  
Vol 115 ◽  
pp. 201-211 ◽  
Author(s):  
Rabah Boukhanouf ◽  
Abdulrahman Alharbi ◽  
Hatem G. Ibrahim ◽  
Omar Amer ◽  
Mark Worall

2008 ◽  
Vol 65 (4) ◽  
pp. 335-339 ◽  
Author(s):  
Carlos Eduardo Bites Romanini ◽  
Yamilia Barrios Tolon ◽  
Irenilza de Alencar Nääs ◽  
Daniella Jorge de Moura

Swine housing must promote an adjusted environment for thermal comfort and high animal productivity without negatively affecting the sow performance and reproductive response. This study evaluated the use of distinct environmental cooling equipments on sow performance, both on the gestation and on nursing in open sided housing. Two treatments were tested in the gestation building: natural ventilation and mechanical ventilation associated to fogging; while in the nursing rooms three treatments were tested: natural ventilation; mechanical ventilation; and evaporative cooling with forced ventilation. Sows were randomly chosen from the same genetic lot form six combined treatments. The evaporative cooling system in the farrowing room differed for piglet performances, at birth (4% higher) and on daily weight gain (15% higher), and also for sow physiological response improving the respiratory rate (8%) and back fat thickness (3%), without influencing skin temperature. The use of evaporative cooling directed to the sow head during nursing improved the physiological and productive results.


2020 ◽  
Vol 12 (23) ◽  
pp. 9882
Author(s):  
Bin Chang ◽  
Yuexi Dang ◽  
Xilian Luo ◽  
Chuck Wah Yu ◽  
Zhaolin Gu

Archaeological museums are usually constructed at the location where historical relic sites are unearthed and are often characterized by large-space building layouts and high energy consumption for the environmental control. However, the traditional strategies for environmental control are limited in protecting the unearthed relics from desiccation cracking and salt concentration. In this study, an environmental control strategy of evaporative cooling system is proposed as a solution to develop a sustainable preservation environment to maintain the condition of the ancient relics at a state of moist saturation. Afterwards, a verification of sustainability and climate suitability analysis of the proposed system were conducted. The results indicate that (1) the evaporative cooling system can fulfil the high humidity preservation environment requirements for the unearthed historical relic sites with a low energy consumption; and (2) the potential use of the evaporative cooling systems is significant in Xi’an and Chengdu (i.e., being 62% and 75%, respectively), and not in Lanzhou and Urumqi. As a conclusion, the proposed strategy provides a sustainable protocol for the preservation of unearthed historical relic sites in archaeological museum.


Sign in / Sign up

Export Citation Format

Share Document