Autonomous Vehicle for Obstacle Detection and Avoidance Using Reinforcement Learning

Author(s):  
C. S. Arvind ◽  
J. Senthilnath
2021 ◽  
Vol 11 (4) ◽  
pp. 1514 ◽  
Author(s):  
Quang-Duy Tran ◽  
Sang-Hoon Bae

To reduce the impact of congestion, it is necessary to improve our overall understanding of the influence of the autonomous vehicle. Recently, deep reinforcement learning has become an effective means of solving complex control tasks. Accordingly, we show an advanced deep reinforcement learning that investigates how the leading autonomous vehicles affect the urban network under a mixed-traffic environment. We also suggest a set of hyperparameters for achieving better performance. Firstly, we feed a set of hyperparameters into our deep reinforcement learning agents. Secondly, we investigate the leading autonomous vehicle experiment in the urban network with different autonomous vehicle penetration rates. Thirdly, the advantage of leading autonomous vehicles is evaluated using entire manual vehicle and leading manual vehicle experiments. Finally, the proximal policy optimization with a clipped objective is compared to the proximal policy optimization with an adaptive Kullback–Leibler penalty to verify the superiority of the proposed hyperparameter. We demonstrate that full automation traffic increased the average speed 1.27 times greater compared with the entire manual vehicle experiment. Our proposed method becomes significantly more effective at a higher autonomous vehicle penetration rate. Furthermore, the leading autonomous vehicles could help to mitigate traffic congestion.


Author(s):  
Nayere Zaghari ◽  
Mahmood Fathy ◽  
Seyed Mahdi Jameii ◽  
Mohammad Sabokrou ◽  
Mohammad Shahverdy

Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes need to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the Learning of Self-driving Vehicles Based on Real Driving Behavior Using Deep Neural Network Techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver is during driving is recorded in different situations and by converting the real driver’s driving video to images and transferring the data to an excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected.


Author(s):  
Óscar Pérez-Gil ◽  
Rafael Barea ◽  
Elena López-Guillén ◽  
Luis M. Bergasa ◽  
Carlos Gómez-Huélamo ◽  
...  

AbstractNowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields of technology, and Autonomous Vehicles (AV) research is one more of them. This paper proposes the using of algorithms based on Deep Learning (DL) in the control layer of an autonomous vehicle. More specifically, Deep Reinforcement Learning (DRL) algorithms such as Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) are implemented in order to compare results between them. The aim of this work is to obtain a trained model, applying a DRL algorithm, able of sending control commands to the vehicle to navigate properly and efficiently following a determined route. In addition, for each of the algorithms, several agents are presented as a solution, so that each of these agents uses different data sources to achieve the vehicle control commands. For this purpose, an open-source simulator such as CARLA is used, providing to the system with the ability to perform a multitude of tests without any risk into an hyper-realistic urban simulation environment, something that is unthinkable in the real world. The results obtained show that both DQN and DDPG reach the goal, but DDPG obtains a better performance. DDPG perfoms trajectories very similar to classic controller as LQR. In both cases RMSE is lower than 0.1m following trajectories with a range 180-700m. To conclude, some conclusions and future works are commented.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


Sign in / Sign up

Export Citation Format

Share Document