Belief state separated reinforcement learning for autonomous vehicle decision making under uncertainty

Author(s):  
Ziqing Gu ◽  
Yujie Yang ◽  
Jingliang Duan ◽  
Shengbo Eben Li ◽  
Jianyu Chen ◽  
...  
Author(s):  
Hongbo Gao ◽  
Guanya Shi ◽  
Kelong Wang ◽  
Guotao Xie ◽  
Yuchao Liu

Purpose Over the past decades, there has been significant research effort dedicated to the development of autonomous vehicles. The decision-making system, which is responsible for driving safety, is one of the most important technologies for autonomous vehicles. The purpose of this study is the use of an intensive learning method combined with car-following data by a driving simulator to obtain an explanatory learning following algorithm and establish an anthropomorphic car-following model. Design/methodology/approach This paper proposed car-following method based on reinforcement learning for autonomous vehicles decision-making. An approximator is used to approximate the value function by determining state space, action space and state transition relationship. A gradient descent method is used to solve the parameter. Findings The effect of car-following on certain driving styles is initially achieved through the simulation of step conditions. The effect of car-following initially proves that the reinforcement learning system is more adaptive to car following and that it has certain explanatory and stability based on the explicit calculation of R. Originality/value The simulation results show that the car-following method based on reinforcement learning for autonomous vehicle decision-making realizes reliable car-following decision-making and has the advantages of simple sample, small amount of data, simple algorithm and good robustness.


2021 ◽  
Vol 7 ◽  
Author(s):  
Simen Theie Havenstrøm ◽  
Adil Rasheed ◽  
Omer San

Control theory provides engineers with a multitude of tools to design controllers that manipulate the closed-loop behavior and stability of dynamical systems. These methods rely heavily on insights into the mathematical model governing the physical system. However, in complex systems, such as autonomous underwater vehicles performing the dual objective of path following and collision avoidance, decision making becomes nontrivial. We propose a solution using state-of-the-art Deep Reinforcement Learning (DRL) techniques to develop autonomous agents capable of achieving this hybrid objective without having a priori knowledge about the goal or the environment. Our results demonstrate the viability of DRL in path following and avoiding collisions towards achieving human-level decision making in autonomous vehicle systems within extreme obstacle configurations.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881716 ◽  
Author(s):  
Hongbo Gao ◽  
Guanya Shi ◽  
Guotao Xie ◽  
Bo Cheng

There are still some problems need to be solved though there are a lot of achievements in the fields of automatic driving. One of those problems is the difficulty of designing a car-following decision-making system for complex traffic conditions. In recent years, reinforcement learning shows the potential in solving sequential decision optimization problems. In this article, we establish the reward function R of each driver data based on the inverse reinforcement learning algorithm, and r visualization is carried out, and then driving characteristics and following strategies are analyzed. At last, we show the efficiency of the proposed method by simulation in a highway environment.


Sign in / Sign up

Export Citation Format

Share Document