Evaluation and Bias Correction of Marine Surface Winds from CMIP5 GCMs for Wave Climate Modelling in the Western North Pacific

APAC 2019 ◽  
2019 ◽  
pp. 1229-1236
Author(s):  
M. R. Badriana ◽  
H. S. Lee
Author(s):  
Mochamad Riam Badriana ◽  
Han Soo Lee

For over years, fundamental component and dataset in climate projection had been covered by general circulation models (GCMs) output mainly from the Coupled Model Inter-comparison Project (CMIP). Marine surface winds are an important output of GCMs and they provide input to marine forecasts and warning systems. Their accuracy have direct implications for marine safety, air-sea fluxes, and wave and ocean modellings. Western North Pacific (WNP) is known as a highly vulnerable region to oceanic and atmospheric hazards, such as storm surges, waves and typhoons. Therefore, this study aims to examine the quality of marine surface winds from CMIP5 and CMIP6 GCMs in the WNP and its sub-regions with respect to a reference data, and presents bias correction of marine surface winds for contributing to wave and ocean modelling communities.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/750mqrERbS8


2021 ◽  
Vol 9 (8) ◽  
pp. 835
Author(s):  
Mochamad Riam Badriana ◽  
Han Soo Lee

For decades, the western North Pacific (WNP) has been commonly indicated as a region with high vulnerability to oceanic and atmospheric hazards. This phenomenon can be observed through general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP). The CMIP consists of a collection of ensemble data as well as marine surface winds for the projection of the wave climate. Wave climate projections based on the CMIP dataset are necessary for ocean studies, marine forecasts, and coastal development over the WNP region. Numerous studies with earlier phases of CMIP are abundant, but studies using CMIP6 as the recent dataset for wave projection is still limited. Thus, in this study, wave climate projections with WAVEWATCH III are conducted to investigate how wave characteristics in the WNP will have changed in 2050 and 2100 compared to those in 2000 with atmospheric forcings from CMIP6 marine surface winds. The wave model runs with a 0.5° × 0.5° spatial resolution in spherical coordinates and a 10-min time step. A total of eight GCMs from the CMIP6 dataset are used for the marine surface winds modelled over 3 hours for 2050 and 2100. The simulated average wave characteristics for 2000 are validated with the ERA5 Reanalysis wave data showing good consistency. The wave characteristics in 2050 and 2100 show that significant decreases in wave height, a clockwise shift in wave direction, and the mean wave period becomes shorter relative to those in 2000.


2013 ◽  
Vol 25 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Jong Suk Park ◽  
KiRyong Kang ◽  
Hyun-Suk Kang ◽  
Young-Hwa Kim

2015 ◽  
Vol 28 (8) ◽  
pp. 3171-3190 ◽  
Author(s):  
Tomoya Shimura ◽  
Nobuhito Mori ◽  
Hajime Mase

Abstract Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of the wave climate to sea surface temperature (SST) conditions in an effort to understand the mechanism behind the wave climate changes by specifically looking at spatial SST variation. A series of wave climate projections forced by surface winds from the MRI-AGCM3.2 were conducted based on SST ensemble experiments. The results yield future changes in annual mean wave height that are within about ±0.3 m. The future changes in summertime wave height in the western North Pacific (WNP), which are influenced by tropical cyclone changes, are highly sensitive to SST conditions. To generalize the result, the wave climate change and SST relation found by this study was compared with multimodel wave ensemble products from the Coordinated Ocean Wave Climate Project (COWCLIP). The spatial variation of SST in the tropical Pacific Ocean is a major factor in the wave climate changes for the WNP during summer.


Sign in / Sign up

Export Citation Format

Share Document