Experimental Investigation and Mathematical Modeling for Material Removal and Tool Wear in Making of Rectangular Channels by Electric Discharge Machining (EDM) on Aluminum–Boron Carbide Composite Sintered Preform

Author(s):  
Suresh Gudipudi ◽  
Selvaraj Nagamuthu ◽  
Kanmani Subbu Subbian ◽  
Surya Prakasa Rao Chilakalapalli
2014 ◽  
Vol 592-594 ◽  
pp. 684-688 ◽  
Author(s):  
K.R. Thangadurai ◽  
A. Asha

Electric discharge machining process is an unconventional machining process primarily used for machining the materials such as difficult to machine in conventional machining process, hardest material and composite materials. In the present work, a study is made to find out the optimum EDM process parameters during machining of AA6061-15% boron carbide composite fabricated through stir casting technique. Three process parameters such as Current, pulse on time and pulse of time are opted as machining parameter variables. Response surface methodology is used to formulate the mathematical model for material removal rate, tool wear rate and surface roughness. Response surface methodology and genetic algorithm are applied to optimize the machining parameters individually by taking combined objective function and compared. Genetic algorithm optimization techniques yields better results than desirability approach. Key words: Electric discharge machining, MRR, TWR, Ra, RSM, Genetic algorithm


2015 ◽  
Vol 813-814 ◽  
pp. 393-397
Author(s):  
Rajinder Kumar ◽  
Neel Kanth Grover ◽  
Amandeep Singh

Electric Discharge Machining (EDM) is one of the most commonly used non-traditional machining processes. Complex geometries can be easily manufactured using EDM. Material removal is achieved by producing continuous spark occurring between well shaped tool electrode and work piece. EDM does not involve direct contact of tool and work piece. Machining process involves a number of input variables like, current, voltage, pulse on/off which in turn affect the machining efficiency of EDM. These process parameters must be optimized to attain high material removal rate and low tool wear rate. The present paper presents theoptimization of tool wear rate of copper and brass electrode on machining of EN-47 using Response Surface Methodology (RSM).


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Kashif Ishfaq ◽  
Muhammad Asad ◽  
Saqib Anwar ◽  
Catalin I. Pruncu ◽  
Mustafa Saleh ◽  
...  

Titanium alloys, especially Ti-6Al-4V, which is considered a difficult-to-cut material, bears numerous applications in aerospace and biomedical sectors. The criticality of the accurate formation of the machined cavity for the said applications and properties of Ti-6Al-4V accentuated the use of electric discharge machining (EDM). However, the issues of lower material removal rate (MRR) and tool wear (TWR) discouraged the use of EDM. These inherent issues hold a pivotal role regarding the sustainable machining of Ti-alloy. Therefore, in this research the potentiality of kerosene-based dielectric, having graphene nanoparticles, is comprehensively examined for the sustainable EDM of Ti-6Al-4V, which was not focused upon yet. Experimentation was performed under Taguchi’s design (L18) with three types of electrodes, namely Aluminum, Brass and Copper. In total, 36 experiments were conducted, of which 18 were with graphene-mixed dielectric and the remaining were with kerosene. Experimental results reveal that the brass electrode with negative tool polarity yields higher MRR for both types of dielectrics. The maximum MRR (7.602 mm3/min) achieved with graphene mixed dielectric is 64.5% greater as compared to that obtained with kerosene (4.621 mm3/min). Moreover, the minimum TWR obtained for graphene-based dielectric, i.e., 0.17 mg/min is approximately 1.5 times less than that achieved with kerosene.


2013 ◽  
Vol 751 ◽  
pp. 9-19 ◽  
Author(s):  
Sarabjeet Singh Sidhu ◽  
Sanjeev Kumar ◽  
Ajay Batish

The particle reinforced metal matrix composite have hard particles dispersed in matrix which make them difficult to machine with conventional machining methods. Electric discharge machining (EDM) is an effective tool for machining such materials. This experimental study was undertaken to identify the significant factors that affect the output responses while machining of 10 vol%Al2O3/Al composite material. The material removal rate (MRR) and tool wear rate (TWR) have a direct relationship with current and an inverse relationship with pulse on-time. Appropriate levels of current and pulse on time levels can be chosen while roughing and finishing operations. Normal polarity between terminals had higher MRR than with reverse polarity. The recast layer had a non-uniform and wave-like morphology and cracks penetrated into the matrix phase resulting in high residual stresses exceeding the ultimate tensile strength of the material. Pulse on-time has greater influence on recast layer thickness than current. The reinforced particles were all clustered under the machined surface with very few in the recast layer which results in a low strength of the machined surface. The presence of reinforced particles in recast layer is very rare, so it is desirable to remove it. Keywords: electro-discharge, machining, aluminum matrix composites, material, removal, tool, wear, roughness, recast, layer


Sign in / Sign up

Export Citation Format

Share Document