Predicting Biomethanation Pattern from Feedstock Composition for Biomass Residues

Author(s):  
D. Ravikumar ◽  
Chanakya N. Hoysall ◽  
S. Dasappa
Keyword(s):  
Author(s):  
A. Kölling ◽  
U. Hellwig ◽  
M. Nowitzki ◽  
N. Sachno ◽  
L. Viscuso

2009 ◽  
Vol 2 (1) ◽  
pp. 34-39
Author(s):  
Walfrido Alonso-Pippo ◽  
Carlos A. Luengo ◽  
Felix F. Fonseca ◽  
Pietro Garzone ◽  
Giacinto Cornacchia

2020 ◽  
Vol 6 ◽  
pp. 940-945
Author(s):  
Reza Sirous ◽  
Fernando José Neto da Silva ◽  
Luís António da Cruz Tarelho ◽  
Nelson Amadeu Dias Martins

2021 ◽  
Vol 5 (5) ◽  
pp. 1521-1537
Author(s):  
Elyas M. Moghaddam ◽  
Avishek Goel ◽  
Marcin Siedlecki ◽  
Karin Michalska ◽  
Onursal Yakaboylu ◽  
...  

Supercritical Water Gasification is a promising approach to convert biogenic residues such as cattle manure, fruit/vegetable waste, and cheese whey into valuable biofuels.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 682
Author(s):  
Tomasz Noszczyk ◽  
Arkadiusz Dyjakon ◽  
Jacek A. Koziel

The European Union created a European Green Deal Program (EGDP). This program aims at a sustainable economy through the transformation of the challenges related to climate and the environment. The main goal of EGDP is climate neutrality by 2050. The increase of alternative biomass residues utilization from various food processing industries and cooperation in the energy and waste management sector is required to meet these expectations. Nut shells are one of the lesser-known, yet promising, materials that can be used as an alternative fuel or a pre-treated product to further applications. However, from a thermal conversion point of view, it is important to know the energy properties and kinetic parameters of the considered biowaste. In this study, the energy and kinetic parameters of walnut, hazelnut, peanut, and pistachio shells were investigated. The results showed that raw nut shells are characterized by useful properties such as higher heating value (HHV) at 17.8–19.7 MJ∙kg−1 and moisture content of 4.32–9.56%. After the thermal treatment of nut shells (torrefaction, pyrolysis), the HHV significantly increased up to ca. 30 MJ∙kg−1. The thermogravimetric analysis (TGA) applying three different heating rates (β; 5, 10, and 20 °C∙min−1) was performed. The kinetic parameters were determined using the isothermal model-fitting method developed by Coats–Redfern. The activation energy (Ea) estimated for β = 5 °C∙min−1, was, e.g., 60.3 kJ∙mol−1∙K−1 for walnut, 59.3 kJ∙mol−1∙K−1 for hazelnut, 53.4 kJ∙mol−1∙K−1 for peanut, and 103.8 kJ∙mol−1∙K−1 for pistachio, respectively. Moreover, the increase in the Ea of nut shells was observed with increasing the β. In addition, significant differences in the kinetic parameters of the biomass residues from the same waste group were observed. Thus, characterization of specific nut shell residues is recommended for improved modeling of thermal processes and designing of bioreactors for thermal waste treatment.


Author(s):  
Maria Anna Cusenza ◽  
Sonia Longo ◽  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Antonio Messineo ◽  
...  

GCB Bioenergy ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 786-803 ◽  
Author(s):  
Olivia Cintas ◽  
Göran Berndes ◽  
Oskar Englund ◽  
Luis Cutz ◽  
Filip Johnsson

Sign in / Sign up

Export Citation Format

Share Document