Prediction of Surface Roughness and Optimisation of Cutting Parameters in Hard Turning of AISI 52100 Steel Based on Response Surface Methodology

Author(s):  
Sandip Mane ◽  
Sanjay Kumar
2011 ◽  
Vol 299-300 ◽  
pp. 1167-1170 ◽  
Author(s):  
Gaurav Bartarya ◽  
S.K. Choudhury

Forces in Hard turning can be used to evaluate the performance of the process. Cutting parameters have their own influence on the cutting forces on the tool. The present work is an attempt to develop a force prediction model based on full factorial design of experiments for machining EN31 steel (equivalent to AISI 52100 steel) using uncoated CBN tool. The force and surface roughness regression models were developed using the data from various set of experiments with in the range of parameters selected. The predictions from the models were compared with the measured force and surface roughness values. The ANOVA analysis was undertaken to test the goodness of fit of data.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


2010 ◽  
Vol 135 ◽  
pp. 243-248 ◽  
Author(s):  
Shu Han ◽  
Qing Long An ◽  
Ming Chen ◽  
Gang Liu ◽  
Yun Shan Zhang

The purpose of this study was to analyze the effects of cutting parameters on the surface roughness (Ra) when turning of alloy cast iron using uncoated carbide insert under dry cutting condition. The mathematical model for the surface roughness was developed by response surface methodology (RSM).Response surface contours were constructed and used for determining the optimum cutting conditions to reduce machining time without increasing the surface roughness.


2017 ◽  
Vol 61 (4) ◽  
pp. 519-526 ◽  
Author(s):  
Ouahid Keblouti ◽  
Lakhdar Boulanouar ◽  
Mohamed Walid Azizi ◽  
Mohamed Athmane Yallese

Sign in / Sign up

Export Citation Format

Share Document