hard turning
Recently Published Documents


TOTAL DOCUMENTS

892
(FIVE YEARS 224)

H-INDEX

57
(FIVE YEARS 11)

2021 ◽  
Vol 13 (2) ◽  
pp. 55-62
Author(s):  
Saswat Khatai ◽  
◽  
Ramanuj Kumar ◽  
Ashok Kumar Sahoo ◽  
◽  
...  

In recent years, machining of hard-to-cut metals by hard turning process is an embryonic technology for machining industry and research development. Hard turning is generally defined as the material removal process of hardened steel having hardness greater than 45 HRC.  The current research presents a comparative hard turning investigation on EN 31 (56 ± 1 HRC) grade steel using physical vapor deposition (PVD) coated carbide tool under dry and wet cooling. The selection of a better cooling strategy among dry and wet cooling was based on the value of obtained surface roughness (Ra) and material removal rate (MRR) in hard turning. Wet cooling exhibited better performance over dry cutting as lower Ra and greater MRR are achieved with wet cooling. Further, considering Taguchi L16 orthogonal array, hard turning experiments were executed in wet cooling and responses like surface roughness (Ra), material removal rate (MRR), and diameter error were studied. Further, the Grey-fuzzy hybrid optimization tool was employed and found improved results relative to the alone grey relational analysis as about 9 % less Ra and 2.612 times more MRR is noticed at the grey fuzzy optimal set of parameters.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2058
Author(s):  
Bogdan Arsene ◽  
Catalin Gheorghe ◽  
Flavius Aurelian Sarbu ◽  
Magdalena Barbu ◽  
Lucian-Ionel Cioca ◽  
...  

Precision hard turning (HT) gained more and more attention in the cutting industry in the last years due to continuous pressure of the global market for reducing costs, minimizing the environmental and health issues, and achieving a cleaner production. Therefore, dry cutting and minimal quantity lubrication (MQL) became widely used in manufacturing to meet the environmental issues with respect to harmful cutting fluids (CFs). Vegetable oils, in MQL machining, are a promising solutions to petroleum-based CFs; however, the effects and performance on surface roughness and tool wear in HT with ceramic inserts remain unclear. To address this limitation, hardened AIDI D2 steel and pure corn oil, rich in saturated and monounsaturated fatty acids, cheap and widely available, have been used to conduct dry and MQL experiments at different cutting speed and feeds. Results show that corn oil is suitable as cutting lubricant in HT, creating a strong anti-wear and anti-friction lubricating film which improves the roughness with 10–15% and tool life with 15–20%, therefore reducing costs. Best surface roughness values (Ra = 0.151 μm, Rz = 0.887 μm, Rpk = 0.261 μm) were obtained at 180 m/min and 0.1 mm/rev. The analysis of variance shows that corn oil has statistical significance on roughness, validating the results.


2021 ◽  
Vol 7 ◽  
Author(s):  
Daniel Toboła ◽  
Aneta Łętocha

Surface integrity is important factor for components exposed to wear, like cold working tools, which need to possess high hardness combined with high wear resistance. Surface treatments such as grinding, hard turning, and hard turning with slide burnishing have been developed for its improvement. Vancron 40 and Vanadis 8 tool steels, of different chemical composition and different types and amounts of carbides, were now investigated. Heat treatment was carried out in vacuum furnaces with gas quenching to hardness of Vancron 64 ± 1 HRC and of Vanadis 65 ± 1 HRC. 3D topography, optical and scanning electron microscopy, X-ray diffraction and ball-on-disc tribological tests against Al2O3 and 100Cr6 balls as counterparts were used to examine wear and friction. For both steels, the lowest values of dynamic frictions and wear rates against Al2O3 counterbodies were achieved after sequential process of hard turning with slide burnishing with a burnishing force of 180 N. For alumina balls, the increase of wear resistance, achieved after hard turning plus burnishing in comparison to grinding exceeds 50 and 60%, respectively for Vanadis 8 and Vancron 40 steels.


2021 ◽  
pp. 169-176
Author(s):  
G. Ragul ◽  
Pallab Roy ◽  
Arjit Ganguly ◽  
Sandip Ghosh ◽  
S. Sankar ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6995
Author(s):  
Qingzhong Xu ◽  
Yan Liu ◽  
Haiyang Lu ◽  
Jichen Liu ◽  
Gangjun Cai

To improve the surface corrosion resistance of 42CrMo4 high-strength steel used in a marine environment, this article studied the effects of hard turning on the surface integrity and corrosion resistance of 42CrMo4 high-strength steel through the single factor experimental method, namely hard turning, polarization corrosion, electrochemical impedance spectroscopy, potentiodynamic polarization curve, and salt spray tests. The results indicated that the surface integrity was modified by the hard turning, with a surface roughness lower than Ra 0.8 μm, decreased surface microhardness, fine and uniform surface microstructure, and dominant surface residual compressive stress. The hard turning process was feasible to strengthen the surface corrosion resistance of 42CrMo4 high-strength steel. The better corrosion resistance of the surface layer than that of the substrate material can be ascribed to the uniform carbides and compact microstructure. The corrosion resistance varied with cutting speeds as a result of the changed surface microhardness and residual compressive stress, varied with feed rates as a result of the changed surface roughness, and varied with cutting depths as a result of the changed surface residual compressive stress, respectively. The surface integrity with smaller surface roughness and microhardness and bigger surface residual compressive stress was beneficial for corrosion resistance.


Author(s):  
Abidin Şahinoğlu ◽  
Mohammad Rafighi ◽  
Ramanuj Kumar

In machining activities, sound emission is one of the key factors toward the operator's health and safety. Sound generation during cutting is the outcome of the interaction between tool and work. The intensity of sound greatly influences the cutting power consumption and surface finish obtained during machining. Therefore, the current work emphasized the analysis of sound emission, power consumption, and surface roughness in hard turning of AISI 4340 steel using a CBN tool which was rarely found in the literature. Response surface methodology (RSM) and artificial neural network (ANN) techniques were utilized to formulate the model for each response. The results indicated that the maximum value of input parameters exhibited the highest level of sound due to the creation of vibration in the machine and tool. Higher sound level indicates the generation of lower power consumption but at the same instant surface roughness was leading with increment in sound level. The feed rate exhibited the utmost noteworthy consequence on surface quality with 87.71% contribution. The cutting power can be decreased by choosing the high level of cutting parameters. The RSM and ANN have a good correlation with experimental data, but the accuracy of the ANN is better than the RSM.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012007
Author(s):  
Avez Shaikh ◽  
Ajinkya Shinde ◽  
Satish Chinchanikar ◽  
Guruprasad Zagade ◽  
Sonia Pardeshi

Abstract Hard turning with CBN and ceramic inserts is commonly regarded as a cost-effective alternative to grinding. However, there have been few studies comparing hard turning with low-cost carbide tools to high-cost CBN and ceramic cutting tools. However, when it comes to the usage of cutting coolant during severe turning, there are mixed outcomes. In this study, a PVD-coated TiSiN-TiAlN carbide tool was used to hard turn AISI 52100 steel in a dry and MQL environment. Through multi-objective optimization, a comparative assessment in terms of surface roughness, cutting force, and tool life under various cutting settings is provided. In terms of three components of cutting force, surface roughness, and tool life, mathematical models were constructed to forecast and improve machining performance. Under both dry and MQL conditions, the study discovered an optimal cutting speed of 108 m/min, a feed value of 0.09 mm/rev, and a depth of cut of 0.16 mm. Under MQL, hard turning produced optimal surface roughness and tool life of 0.88 m and 64 minutes, respectively. In comparison to hard turning under dry cutting, the optimal surface roughness was 1.07 m and the tool life was 49 minutes. Under MQL, tool life increased by over 31%, according to the findings of the experiments. Under dry and MQL conditions, however, no significant differences in cutting forces and surface roughness were identified.


2021 ◽  
Vol 23 (10) ◽  
pp. 272--280
Author(s):  
Mir Qurrat Ul Ain ◽  
◽  
Manjit Singh ◽  
Kapil Prashar ◽  
◽  
...  

The work introduced in this proposal tends to the surface unpleasantness and flank wear during hard turning of AISI 4340 steel (33HRC) utilizing CVD (TiCN/Spasm/Al2O3/TiN) multi-facet covered carbide device and PVD (TiCN/Al2O3) covered carbide device. Three variables (cutting rate, feed and profundity of cut) and three level factorial test plans with Taguchi’s L9OA and factual examination of difference were acted to explore the impact of these cutting boundaries on the apparatus and work piece as far as flank wear, and surface harshness. Additionally the examination of these impacts between previously mentioned sorts of apparatuses was finished. The outcomes show that for surface unpleasantness and flank wear, feed and cutting velocity were measurably huge and profundity of cut had least impact on both surface harshness and flank wear. For surface harshness, feed was more huge followed by cutting velocity for the two sorts of devices, while as, for flank wear cutting pace was more huge followed by feed for the two kinds of instruments. Surface completion was estimated in Ra boundary and a decent surface completion was acquired by PVD covered apparatus at low and medium rates, anyway with the speeding up the CVD covered carbide device showed better surface completion. Flank wear was estimated by utilizing optical magnifying instrument and the outcomes show that more wear happened in PVD covered carbide apparatus when contrasted with CVD covered carbide device under same cutting boundaries and natural conditions. Consequently for better surface completion at low and medium velocities PVD covered carbide apparatus is better and for higher paces, CVD covered carbide device is ideal. For low apparatus wear, CVD covered carbide device is liked.


Sign in / Sign up

Export Citation Format

Share Document