Investigation of Surface Roughness during Turning Process Based on Response Surface Methodology

2010 ◽  
Vol 135 ◽  
pp. 243-248 ◽  
Author(s):  
Shu Han ◽  
Qing Long An ◽  
Ming Chen ◽  
Gang Liu ◽  
Yun Shan Zhang

The purpose of this study was to analyze the effects of cutting parameters on the surface roughness (Ra) when turning of alloy cast iron using uncoated carbide insert under dry cutting condition. The mathematical model for the surface roughness was developed by response surface methodology (RSM).Response surface contours were constructed and used for determining the optimum cutting conditions to reduce machining time without increasing the surface roughness.

2011 ◽  
Vol 117-119 ◽  
pp. 1561-1565
Author(s):  
Muhammad Yusuf ◽  
Mohd Khairol Anuar Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

This paper describes effect of cutting parameters on surface roughness for turning of aluminium alloy 7050 using carbide cutting tool with dry cutting condition. The model is developed based on cutting speed, feed rate and depth of cut as the parameters of cutting process. The selection of cutting process was based on the design of experiments Response Surface Methodology (RSM). The objective of this research is finding the optimum cutting parameters based on surface roughness. The relation between cutting parameters and surface roughness were discussed.


2010 ◽  
Vol 135 ◽  
pp. 265-270 ◽  
Author(s):  
Q.C. Wang ◽  
Qing Long An ◽  
Ming Chen ◽  
Gang Liu ◽  
Yun Shan Zhang

Alloy cast iron cylinder is the mainstream product used in engine nowadays. However, the machinability of alloy cast iron is poor because of its enhanced mechanical properties. In this paper, turning experiment has been conducted to study machinability of alloy cast iron with uncoated and coated carbide tools under dry cutting condition. The results of the experiment indicated that the turning performance of alloy cast iron with coated tool was much better than uncoated tool in terms of cutting force coefficients and tool wear. Feed rate has a great influence on surface roughness, and appropriate tool wear is benefit of finished surface roughness.


This paper presents the optimization in machining processes on the cutting parameters for the S45C in turning process using the response surface method (RSM). The experimental work conducted investigates the influence of cutting parameters on statistical analysis of signals and surface quality. The paper also presents a statistical analysis of signal processing. The cutting force was measured during machining using the Kistler 9129AA dynamometer to monitor the force signals and the data was analyzed using the I-kazTM method of statistical analysis. This statistical analysis was used to assess the effect of force signals during the machining process. The RSM models for Ra and Rz, and Ideveloped with ANOVA and multiple regression equations. The models also were compared and validated with the predicted and measured of Ra and Rz values, and I-kaz coefficients. The optimal configuration of cutting parameters was observed at 200 m/min, 0.1 mm/rev and 0.521 mm with desirability of 95.9%. It is observed that the models developed are suggested to be utilized for predicting surface roughness values and I-kaz coefficients for the machining of S45C steel.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


Sign in / Sign up

Export Citation Format

Share Document