Design of CRONE-Based Fractional-Order Control Scheme for BIS Regulation in Intravenous Anesthesia

Author(s):  
Bhavina J. Patel ◽  
Hiren G. Patel
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Luca Bruzzone ◽  
Pietro Fanghella

This paper discusses the application of a particular fractional-order control scheme, the PDD1/2, to the position control of a micrometric linear axis. The PDD1/2scheme derives from the classical PD scheme with the introduction of the half-derivative term. The PD and PDD1/2schemes are compared by adopting a nondimensional approach for the sake of generality. The linear model of the closed-loop system is discussed by analysing the pole location in theσ-plane. Then, different combinations of the derivative and half-derivative terms, characterized by the same settling energy in the step response, are experimentally compared in the real mechatronic application, with nonnegligible friction effects and a position set point with trapezoidal speed law. The experimental results are coherent with the nonlinear model of the controlled system and confirm that the introduction of the half-derivative term is an interesting option for reducing the tracking error in the transient state.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


Sign in / Sign up

Export Citation Format

Share Document