pole location
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Geronimo Macias ◽  
Kooktae Lee

In this paper, a new design of a helium-assisted hybrid drone is proposed for flight time enhancement. As is widely known, most of the drones with a VTOL (vertical take-off and landing) feature have a short operation time, limiting their capability to carry out sustainable operations for the given missions. Thus, with the clear goal of enhancing the flight time, this study aims to develop a hybrid drone system, where a helium balloon is used to provide a lifting force for this purpose. The proposed design for the hybrid drone has several benefits including easiness to manufacture and relatively small size when compared to other types of hybrid drones. Various analyses are conducted for the design of the hybrid drone system including the balloon shape and size, buoyant force, flight time, and connector design. Since stability and performance are one of the most important issues for the new design, the pole location analysis is conducted based on the control theory. This rigorous analysis provides that the proposed hybrid drone design is stable as well as robust against swinging motions. To validate the effectiveness of the proposed design and flight time enhancement, simulations were conducted and experimental results are also provided using the manufactured hybrid drone system. Through the real experiments, it is proved that the hybrid drone can increase the flight time more than 2.5 times while guaranteeing stable motions.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1305
Author(s):  
Stavroula Kapoulea ◽  
Costas Psychalinos ◽  
Ahmed S. Elwakil ◽  
Mohammad Saleh Tavazoei

A power-law compensator scheme for achieving robust frequency compensation in control systems including plants with an uncertain pole, is introduced in this work. This is achieved through an appropriate selection of the compensator parameters, which guarantee that the Nyquist diagram of the open-loop system compensator-plant crosses a fixed point independent of the plant pole variations. The implementation of the fractional-order compensator is performed through the utilization of a curve-fitting-based technique and the derived rational integer-order transfer function is realized on a Field-Programmable Analog Array device. The experimental results confirm that the the phase margin is well preserved, even for ±40% variation in the pole location of the plant.


Author(s):  
Renato Augusto Lira de Andrade ◽  
Pericles Rezende Barros ◽  
Rafael Bezerra Correia Lima
Keyword(s):  

Author(s):  
Moath Sababha ◽  
Mohamed Zohdy ◽  
Maged Kafafy

In this paper, the new automatic tool that is based on the firefly algorithm whose purpose is optimization of pole location in the control of state feedback has been presented. The aim is satisfying specifications of performance like settling and rise time, steady state as well as overshoot error. Utilization of Firefly algorithm has demonstrated the benefits of controllers based on this kind of time domain over controllers based on the frequency domain like Proportional-Integral Derivative (PID). The presented method is more particular for the multi-input multi-output (MIMO) systems that have substantial state numbers. The simulation results indicated that the proposed method had superior performance in providing solution to the problems that involved stabilization of helicopter under the Rationalized Model of helicopter/ Moreover, it demonstrates the Firefly algorithm effectiveness with regards to, the state observer design and feedback controller and auto-tuning.


Algorithms ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 103 ◽  
Author(s):  
Jocelyn Sabatier

This paper analyses algorithms currently found in the literature for the approximation of fractional order models and based on recursive pole and zero distributions. The analysis focuses on the sub-optimality of the approximations obtained and stability issues that may appear after approximation depending on the pole location of the initial fractional order model. Solutions are proposed to reduce this sub-optimality and to avoid stability issues.


2017 ◽  
Vol 59 ◽  
pp. 16-26 ◽  
Author(s):  
Luiz A. Maccari ◽  
Humberto Pinheiro ◽  
Ricardo C.L.F. Oliveira ◽  
e Vinícius F. Montagner

Sign in / Sign up

Export Citation Format

Share Document