Immediate Load-Penetration Behaviour of Sand Piles with Sustainable Material

Author(s):  
A. Mugesh ◽  
J. Niranjan ◽  
S. Gunalan ◽  
S. V. Sivapriya
Author(s):  
D.J. Lim ◽  
W.C. Lane

The morphology and function of the vestibular sensory organs has been extensively studied during the last decade with the advent of electron microscopy and electrophysiology. The opening of the space age also accelerated active investigation in this area, since this organ is responsible for the sensation of balance and of linear, angular and gravitational acceleration.The vestibular sense organs are formed by the saccule, utricle and three ampullae of the semicircular canals. The maculae (sacculi and utriculi) have otolithic membranes on the top of the sensory epithelia. The otolithic membrane is formed by a layer of thick gelatin and sand-piles of calcium carbonate crystals (Fig.l).


2021 ◽  
pp. 1-14
Author(s):  
Kartick K. Samanta ◽  
Izhar Mustafa ◽  
Sayandeep Debnath ◽  
Esha Das ◽  
G. Basu ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 102150
Author(s):  
Arshi Choudhry ◽  
Atul Sharma ◽  
Tabrez Alam Khan ◽  
Saif Ali Chaudhry

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kofi Agyekum ◽  
Emmanuel Adinyira ◽  
James Anthony Oppon

PurposeThe increased awareness of global environmental threats like climate change has created an upsurge of interest in low embodied carbon building materials for green building delivery. Though the literature advocates for the use of hemp-based building materials, there is no evidence of studies to explore its potential use in Ghana. Therefore, this study explores the potential factors that limit the adoption of hemp as an alternative sustainable material for green building delivery in Ghana.Design/methodology/approachA structured questionnaire was used to solicit the views of built environment professionals operating in construction, consulting and developer firms. The questions were developed through a comparative review of the related literature and complemented with a pilot review. Data were analysed via descriptive and inferential statistics.FindingsOn the average, the majority of the respondents showed a moderate level of awareness of hemp and its related uses in the construction industry. Also, certain key factors like the perceived association of hemp with marijuana, lack of expertise in the production of hemp-related building materials, farmers not getting the needed clearance for the cultivation of hemp, lack of legislation by the government in the legalisation of hemp and the inadequate knowledge of consumers on the benefits of hemp-based building materials were identified as potential limitations to the adoption of hemp as an alternative sustainable material for green building delivery.Originality/valueThe findings from this study provide insights into a less investigated area in sub-Saharan Africa and further provide new and additional information to the current state-of-the-art on the potential for the use of hemp in the building construction sector.


Author(s):  
Anjaly M.

ABSTRACT Traffic is increasing day by day due to increased vehicle ownership and infrastructure development. As the modern highway transportation has high speed, high traffic density, heavy load and channelized traffic, bituminous concrete is subjected to various types of distress such as rutting, fatigue cracking and raveling. Fatigue cracking occurs because bituminous layers are weak in tension. Therefore reinforcement of the bituminous mixes is one approach to improve tensile strength. Natural fibers can be used for reinforcing as a substitute for synthetic fibers due to their lower cost, ecological recycling and low specific gravity. Among natural fibers growing attention is being paid to coir fiber due to its easy availability, good wearing resistance and more durable property. Also rutting along wheel path causes vehicle hydroplaning during rainy seasons due to loss of skid resistance. As well as water accumulated over the longitudinal depressions damages bond between binder and aggregates. Therefore there is a need for a durable mix which can increase the service life of pavement thus reduces life cycle cost. This study is about use of coir fiber in pavement construction to improve the performance characteristics of the asphalt mixture being used. Stone matrix asphalt mixture is a rut resistant and durable mix which is reinforced with coir fiber and tested for various performance characteristics. Coir fiber is a sustainable material which can be used for rutting resistant mixture.   Keywords: Stone matrix asphalt, Coir fiber, rutting


Author(s):  
Geoff W. Connors

Protection of the pipe during and after pipeline construction is of paramount importance for safety and pipeline integrity. Areas of rock and stone are often encountered during construction of new pipelines. Even with modern pipeline coatings, additional protection for the pipe is necessary where rock or stone exposure is significant. Historically, additional pipe protection used in these types of situations is achieved through adding either a significant layer of sand or select backfill above and below the pipeline (sand padding) and/or by attaching a high-impact resistant, poly-type rock shield around the pipeline during the pipeline installation process. To accommodate sand padding, some form of intermittent support of the pipeline is generally required to elevate the pipeline off the trench bottom. Similar intermittent support is also recommended practice when using poly-type rock shields to keep the pipeline from fully resting on trench rocks. Current methods of in-trench support involve sand piles, sand bags, spray foam and individually formed foam pillows — each with drawbacks: i) Sand Piles are difficult to install and often oval or dent the pipe when improperly placed. ii) Sand bags require hand placement for proper support. In open trenches, this can be time consuming and unsafe. Improper placement can cause the pipe to oval or dent. iii) Spray-in foam is considered to be an obstruction of cathodic protection currents. Newly constructed pipelines full of hydrostatic test water and one metre cover can cause foam to compress excessively. iv) Foam pillows are light and easily placed — but can float out of position and compress or crack under heavy loads. As with all foam, cathodic shielding is always a concern. A new, engineered method of in-trench pipeline support is now available — the Structured Pipeline Pillow (SPP). SPP’s are injection molded and made from high strength, environmentally inert polypropylene or polyethylene resins. Designed to support any size pipeline, SPP’s are most effective with larger diameter, heavier pipelines. One SPP is engineered to carry a single 40′ joint of heavy wall pipeline filled with hydrostatic test water. Compared with current methods, SPP’s: i) Stack tightly for transport. ii) Are light enough for installation from outside the trench and resist floatation when ground water is present. iii) Help ensure the pipeline is centered in the trench during the pipeline installation. iv) Maintain long-term pipe clearance above rocky trench bottoms. v) Ovality and denting concerns are reduced. vi) Allow cathodic protection an easy path to the pipeline. vii) Will never biodegrade. In their extended stacking mode, SPP’s tested well as an effective alternative to wooden skids for many situations such as pipe stockpiling; stringing along the rights-of-way (ROW); and even for some low level skidding during the welding process.


2016 ◽  
Vol 14 (4) ◽  
pp. 0-0 ◽  
Author(s):  
Barbara Del Curto ◽  
Nadia Barelli ◽  
Mauro Profaizer ◽  
Silvia Farè ◽  
Maria Cristina Tanzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document