biodegradation process
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 87)

H-INDEX

20
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 400
Author(s):  
Katarzyna Wojtowicz ◽  
Teresa Steliga ◽  
Piotr Kapusta ◽  
Joanna Brzeszcz ◽  
Tomasz Skalski

Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.


2021 ◽  
Author(s):  
Imene Hocini ◽  
Khaled Benabbas ◽  
Nabila Khellaf ◽  
Hayet Djelal ◽  
Abdeltif Amrane

Abstract We report the biodegradation of dye pollutants by a green process that combines the microbial activity of activated sludge with phytoremediation ability of the aquatic plant L. gibba. The obtained results showed that the combination of the two processes when the pollutant was present at concentration of 50 mg/L, lead to a dye removal of 95 and 70% for VB-20 and DR-89, respectively. The biodegradability index based on COD and BOD5 measurement was equal to 3.1 for DR-89 and 2.0 for VB-20, confirming that DR-89 was removed by biosorption phenomena and only VB-20 was transformed into biodegradable compounds. UV-visible, FT-IR and LC/MS analysis were used as a tool for the monitoring of the biodegradation metabolite and the results showed that VB-20 biodegradation occurred by the cleavage of anthraquinone cycle and transformation of aromatic compounds to light hydrocarbon chain; this was further confirmed by the calculation of Fukui index using DFT method. This study highlighted the synergy between the phytoremediation and biodegradation process for organic dye removal.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Hui Gao ◽  
Jiafeng Niu ◽  
Hua Yang ◽  
Zhaoxin Lu ◽  
Libang Zhou ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by several Fusarium species that is hazardous to humans and animals after entering food chains. In this study, by adding cofactors, the Devosia strain A6-243 is identified as the DON-transforming bacteria from a bacterial consortium with the ability to biotransform DON of Pseudomonas sp. B6-24 and Devosia strain A6-243, and its effect on the biotransformation process of DON is studied. The Devosia strain A6-243 completely biotransformed 100 μg/mL of DON with the assistance of the exogenous addition of PQQ (pyrroloquinoline quinone) within 48 h and produced non-toxic 3-epi-DON (3-epi-deoxynivalenol), while Pseudomonas sp. B6-24 was not able to biotransform DON, but it had the ability to generate PQQ. Moreover, the Devosia strain A6-243 not only degraded DON, but also exhibited the ability to degrade 3-keto-DON (3-keto-deoxynivalenol) with the same product 3-epi-DON, indicating that DON epimerization by the Devosia strain A6-243 is a two-step enzymatic reaction. The most suitable conditions for the biodegradation process of the Devosia strain A6-243 were a temperature of 16–37 °C and pH 7.0–10, with 15–30 μM PQQ. In addition, the Devosia strain A6-243 was found to completely remove DON (6.7 μg/g) from DON-contaminated wheat. The results presented a reference for screening microorganisms with the ability of biotransform DON and laid a foundation for the development of enzymes for the detoxification of mycotoxins in grain and its products.


2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Rim Werheni Ammeri ◽  
Yassine Hidri ◽  
Mohamed Bagues ◽  
Abdennaceur Hassen

2021 ◽  
Author(s):  
Rongrong Gao ◽  
Rui Liu ◽  
Chaomin Sun

Plastics pollution has been a global concern. Huge quantities of polyethylene (PE), the most abundant and refractory plastic in the world, have been accumulating in the environment causing serious ecological problems. However, the paucity of microorganisms and enzymes that efficiently degrading PE seriously impedes the development of bio-products to eliminate this environmental pollution. Here, by screening hundreds of plastic waste-associated samples, we isolated a fungus (named Alternaria sp. FB1) that possessing a prominent capability of colonizing, degrading and utilizing PE. Strikingly, the molecular weight of PE film decreased 95% after the fungal treatment. Using GC-MS, we further clarified that a four-carbon product (named Diglycolamine) accounted for 93.28% of all degradation products after the treatment by strain FB1. We defined potential enzymes that involved in the degradation of PE through a transcriptomic method. The degradation capabilities of two representative enzymes including a laccase and a peroxidase were verified. Lastly, a complete biodegradation process of PE is proposed. Our study provides a compelling candidate for further investigation of degradation mechanisms and development of biodegradation products of PE.


Author(s):  
Julia RG Carvalho ◽  
Gabriel Conde ◽  
Marina L Antonioli ◽  
Clarissa H Santana ◽  
Thayssa O Littiere ◽  
...  

In horses, there is an increasing interest in developing long-lasting drug formulations, with bi-opolymers as viable carrier alternatives in addition to their use as scaffolds, suture threads, screws, pins, and plates for orthopedic surgeries. This communication focuses on the prolonged biocompatibility and biodegradation of PLA, prepared by hot pressing at 180 ºC. Six samples were implanted subcutaneously on the lateral surface of the neck of one horse. The polymers remained implanted for 24 to 57 weeks. Physical examination, plasma fibrinogen, and the mechanical noci-ceptive threshold (MNT) were performed. After 24, 28, 34, 38, and 57 weeks, the materials were removed for histochemical analysis using hematoxylin-eosin and scanning electron microscopy (SEM). There were no essential clinical changes. MNT decreased after the implantation procedure, returning to normal after 48h. A foreign body response was observed by histopathologic evalua-tion up to 38 weeks. At 57 weeks, no polymer or fibrotic capsules were identified. SEM showed surface roughness suggesting a biodegradation process, with an increase in the average pore di-ameter. As in the histopathological evaluation, it was not possible to detect the polymer 57 weeks after implantation. PLA showed biocompatible degradation and these findings may contribute to future research in the biomedical area.


2021 ◽  
Vol 896 (1) ◽  
pp. 012042
Author(s):  
I B Priyambada ◽  
B Widianarko ◽  
S B Sasongko ◽  
A S Puspita

Abstract Leachate is the product of the biodegradation process in the landfill. On-site treatment of leachate using leachate recirculation is one of the alternative methods to reduce the hazard. The operation of leachate recirculation provides benefits such as speeding up biodegradation, lowering pollutant concentrations, and increasing gas production. This study aims to evaluate the application of leachate recirculation on the concentration of CO2 and CH4 produced. Experiments were performed in a laboratory using 20 lysimeters, with 1 L in volume for 365 days. The lysimeter was divided into two groups, with 10 reactors, each group arranged in series. Leachate recirculation will be given to the second reactor until the tenth reactor, using a high leachate concentration for the first group and a low concentration of leachate for the second. The addition of leachate in the two reactor treatment groups significantly increased the organic content in the leachate. Leachate recirculation does not cause a significant escalation in CO2 and CH4 concentration compared to reactors without leachate recirculation. In the reactor group with high leachate concentrations, reactors with leachate recirculation produced a more stable gas concentration than those without leachate recirculation which produced more volatile CH4 concentration.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-12
Author(s):  
Ledis Heru Saryono Putro ◽  

Palm oil mill effluent (POME) treatment in Indonesia is still predominant using an open pond system. This system has the weakness of the unknown and uncontrollable value of greenhouse gas (GHG) emissions into the atmosphere. This study estimated GHG emissions (CH4 and CO2) from anaerobic ponds and their potential as a renewable energy source and obtain GHG emission conversion coefficients for each kg of COD POME and ton of crude palm oil (CPO). Gas samples were collected using a closed static chamber. GHG sample concentration testing was done using Gas Chromatography with a flame ionization detector (FID) and thermal conductivity detector (TCD). The results showed that the emission rate of CH4 and CO2 in the anaerobic pond POME treatment was relatively high, 261.93 and 595.99 g/m2/day, respectively, equivalent to 48.572 t CO2-eq/day or 14,571.5 t CO2-eq/year. CO2 emissions were greater than two times CH4 emissions, both spatially and temporally. There was a process of facultative biodegradation, aerobic and or anaerobic process according to the biotic-abiotic environment and the levels of organic components in the substrate. In anaerobic ponds, the optimal requirements for the biodegradation process tended to be unfulfilled, so the emission rate of CH4 was less than CO2. The GHG conversion coefficient was obtained, namely each kg of COD from POME emitted 6.266 kg CO2-eq of GHG; for each m3 of POME emitted by 0.163 t CO2-eq of GHG; and 0.556 t CO2-eq/t CPO. The maximum potential for POME to energy conversion was 1.045 MWe with a power capacity of 8,603 MWh/year.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeiad Moussa ◽  
Doaa B. Darwish ◽  
Salma S. Alrdahe ◽  
WesamEldin I. A. Saber

The current study reported a new keratinolytic bacterium, which was characterized as Bacillus paramycoides and identified by 16S rRNA, and the sequence was then deposited in the GenBank (MW876249). The bacterium was able to degrade the insoluble chicken feather keratin (CFK) into amino acids (AA) through the keratinase system. The statistical optimization of the biodegradation process into AA was performed based on the Plackett–Burman design and rotatable central composite design (RCCD) on a simple solid-state fermentation medium. The optimum conditions were temperature, 37°C, 0.547 mg KH2PO4, 1.438 mg NH4Cl, and 11.61 days of incubation. Innovatively, the degradation of the CFK process was modeled using the artificial neural network (ANN), which was better than RCCD in modeling the biodegradation process. Differentiation of the AA by high-performance liquid chromatography (HPLC) revealed the presence of 14 AA including essential and non-essential ones; proline and aspartic acids were the most dominant. The toxicity test of AA on the HepG2 cell line did not show any negative effect either on the cell line or on the morphological alteration. B. paramycoides ZW-5 is a new eco-friendly tool for CFK degradation that could be optimized by ANN. However, additional nutritional trials are encouraged on animal models.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3528
Author(s):  
Anatoly A. Olkhov ◽  
Elena E. Mastalygina ◽  
Vasily A. Ovchinnikov ◽  
Tatiana V. Monakhova ◽  
Alexandre A. Vetcher ◽  
...  

A complex of structure-sensitive methods of morphology analysis was applied to study film materials obtained from blends of poly(3-hydroxybutyrate) (PHB) and chitosan (CHT) by pouring from a solution, and nonwoven fibrous materials obtained by the method of electrospinning (ES). It was found that with the addition of CHT to PHB, a heterophase system with a nonequilibrium stressed structure at the interface was formed. This system, if undergone accelerated oxidation and hydrolysis, contributed to the intensification of the growth of microorganisms. On the other hand, the antimicrobial properties of CHT led to inhibition of the biodegradation process. Nonwoven nanofiber materials, since having a large specific surface area of contact with an aggressive agent, demonstrated an increased ability to be thermo-oxidative and for biological degradation in comparison with film materials.


Sign in / Sign up

Export Citation Format

Share Document