Assessment of Flow Field Behind the Mechanical Vortex Generators at Mach 2.0

Author(s):  
C. Manisankar ◽  
S. B. Verma
Keyword(s):  
Author(s):  
Marc Henze ◽  
Christopher Dietz ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

In order to enhance convective heat transfer, turbulence promoters or vortex generators (VGs) are often used to manipulate the flow field and to benefit from their effect on thermal performance. The current investigation is directed towards a detailed understanding of the generated vortex flows and their impact on heat transfer for wedge shaped full-body VGs in internal flows. The main focus is on longitudinal and parallel arrangements of two or three VGs, where interaction of the induced flow field plays an important role. A single VG introduces a main vortex pair moving longitudinally downstream which is symmetric to the mid-plane of the turbulator itself. By using arrangements of several VGs it is possible to take advantage of the vortex interaction and define or deflect zones of enhanced heat transfer. In certain cases (e.g. due to manufacturing reasons) sharp edges on the elements cannot be realized. The effect of this discrepancy in the designated geometry is also investigated. Data for heat transfer behind a sharp-edged VG is compared with data for VGs manufactured with two different edge radii. In the present experimental setup the VGs are mounted on the bottom wall of a rectangular channel. For Reynolds numbers of 150,000 up to 550,000 the heat transfer coefficient is measured with the transient thermochromic liquid crystal (TLC) thermometry which is based on the measurement of the wall temperature response to a given step change in the fluid temperature. Numerical simulations using a Reynolds-Stress Model describe the flow field around the arrangements and are used for further interpretation of the experimental heat transfer distributions. Effects of vortex interactions on the heat transfer distribution are described for parallel and longitudinal arrangements. In the experimental data for elements with rounded edges a significant reduction in heat transfer can be observed.


Author(s):  
Chen Xiao ◽  
Fang Liang-Wei

This paper introduces the features of using co-rotating vortex generators for controlling boundary layer and flow field in the inlet without flow separation. The principles of the arrangements of the blades and selection of constructional parameters of the generators that are applied to create the transverse flow between the high and low pressure regions and to reduce the secondary flow losses are analysed. The experimental results show that when the appropriate parameters of the co-rotating vortex generators are chosen for the inlet subsonic diffuser with apparent high and low pressure regions, not only the nonuniformity of the flow field is greatly improved but also the dynamic performance of the flow at exit is slightly improved.


2007 ◽  
Vol 2007.56 (0) ◽  
pp. 265-266
Author(s):  
Kanyu UEOKA ◽  
Kazuhiko YOKOTA ◽  
Motoyuki ITOH ◽  
Shinji TAMANO

2009 ◽  
Vol 16 (2) ◽  
pp. 171-188 ◽  
Author(s):  
J. von Wolfersdorf ◽  
Bernhard Weigand ◽  
C. F. Dietz ◽  
S. O. Neumann ◽  
M. Henze

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Yuichi Kuya ◽  
Kenji Takeda ◽  
Xin Zhang

Vortex generators can be applied to control separation in flows with adverse pressure gradients, such as wings. In this paper, a study using three-dimensional steady computations for an inverted wing with vortex generators in ground effect is described. The main aim is to provide understanding of the flow physics of the vortex generators, and how they affect the overall aerodynamic performance of the wing to complement previous experimental studies of the same configuration. Rectangular vane type sub-boundary layer and large-scale vortex generators are attached to the suction surface of the wing, including both counter-rotating and co-rotating configurations. In order to provide confidence, Reynolds-averaged Navier–Stokes simulations using the Spalart–Allmaras turbulence model are validated against the experimental results regarding force, pressure, and wake characteristics, with the validation exhibiting close agreement with the experimental results. The streamwise friction shows the downwash induced by the generated vortex acts to suppress flow separation. The flow field survey downstream of the vortex generators features breakdown and dominance of the generated vortex in the flow. The vortex generated by the counter-rotating sub-boundary layer vortex generator grows in size and breaks down as it develops downstream, while the vortex generated by the counter-rotating large-scale vortex generator shows high vorticity even further downstream, indicating the persistence of the vortex in the flow. The flow field behind the co-rotating sub-boundary layer vortex generator is dominated by a lateral flow, having the spanwise flow component rather than a swirling flow, and the vortex quickly dissipating as it develops downstream. The results from this paper complement previous experimental measurements by highlighting the flow physics of how vortex generators can help control flow separation for an inverted wing in ground effect, and how critical vortex generator type and size are for its effectiveness.


1996 ◽  
Vol 316 ◽  
pp. 1-27 ◽  
Author(s):  
K. B. M. Q. Zaman

The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450 000 and a Mach number of 0.31. The vortex generators are in the form of ‘delta tabs’, triangular-shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers, is due to the difference in induced velocities for different segments of a rolled-up azimuthal vortical structure. The other is due to the induced velocities of streamwise vortex pairs in the flow. While the former mechanism, referred to here as the ωθ-dynamics, is responsible for a rapid axis switching in periodically forced jets, e.g. screeching supersonic jets, the effect of the tabs is governed mainly by the latter mechanism, referred to as the ωx-dynamics. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the ωθ-dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the ωx-dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase-averaged measurements for a periodically forced case, over a volume of the flow field, are carried out in an effort to gain insight into the dynamics of these vortical structures. The results are used to examine such processes as the reorientation of the azimuthal vortices, the resultant evolution of streamwise vortex pairs, as well as the redistribution of streamwise vortices originating from secondary flow within the nozzle.


2021 ◽  
Author(s):  
Muhammad Ibrahim ◽  
Tareq Saeed

Abstract This study examines the turbulent flow field and heat transfer rate (HTR) of the non-Newtonian H2O-Al2O3-carboxymethyl (CMC) in a channel with vortex generators. The finite volume method and SIMPLE algorithm were employed for solving the partial differential equations. The mean Nusselt numbers (Num) and pressure drops were studied at angles of 30-60°, vortex generator depths of 1-3 mm, Reynolds numbers (Re) of 3000-30000, and nanoparticles volume fractions (φ) of 0.5% and 1.5%. According to the numerical results, the use of triangular vortex generators significantly incremented the Nusselt number (Nu) of the non-Newtonian nanofluid (NF), while it had a lower effect on the enhancement of pressure drop (DP). It was also indicated that a change in the vortex generator depth in the range of a few millimeters had no significant effects on the Nu and pressure drop. Moreover, a rise in the Re (i.e., more turbulent flow) significantly incremented HTR. An increase in the Re raised pressure drop; however, the Num incremented more than the pressure drop. Also, the variations of the local Nu indicated that the local Nu significantly incremented around vortex generators due to the formation of vortex flows. An enhancement in the volume fraction of the base fluid’s nanoparticles (NPs) from 0.5% to 1.5% significantly incremented HTR and the Nu.


Equipment ◽  
2006 ◽  
Author(s):  
C. F. Dietz ◽  
M. Henze ◽  
S. O. Neumann ◽  
J. von Wolfersdorf ◽  
Bernhard Weigand

Sign in / Sign up

Export Citation Format

Share Document