Design of an Efficient Deep Neural Network for Multi-level Classification of Breast Cancer Histology Images

Author(s):  
H. S. Laxmisagar ◽  
M. C. Hanumantharaju
Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


2021 ◽  
pp. 1063293X2110251
Author(s):  
K Vijayakumar ◽  
Vinod J Kadam ◽  
Sudhir Kumar Sharma

Deep Neural Network (DNN) stands for multilayered Neural Network (NN) that is capable of progressively learn the more abstract and composite representations of the raw features of the input data received, with no need for any feature engineering. They are advanced NNs having repetitious hidden layers between the initial input and the final layer. The working principle of such a standard deep classifier is based on a hierarchy formed by the composition of linear functions and a defined nonlinear Activation Function (AF). It remains uncertain (not clear) how the DNN classifier can function so well. But it is clear from many studies that within DNN, the AF choice has a notable impact on the kinetics of training and the success of tasks. In the past few years, different AFs have been formulated. The choice of AF is still an area of active study. Hence, in this study, a novel deep Feed forward NN model with four AFs has been proposed for breast cancer classification: hidden layer 1: Swish, hidden layer, 2:-LeakyReLU, hidden layer 3: ReLU, and final output layer: naturally Sigmoidal. The purpose of the study is twofold. Firstly, this study is a step toward a more profound understanding of DNN with layer-wise different AFs. Secondly, research is also aimed to explore better DNN-based systems to build predictive models for breast cancer data with improved accuracy. Therefore, the benchmark UCI dataset WDBC was used for the validation of the framework and evaluated using a ten-fold CV method and various performance indicators. Multiple simulations and outcomes of the experimentations have shown that the proposed solution performs in a better way than the Sigmoid, ReLU, and LeakyReLU and Swish activation DNN in terms of different parameters. This analysis contributes to producing an expert and precise clinical dataset classification method for breast cancer. Furthermore, the model also achieved improved performance compared to many established state-of-the-art algorithms/models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


2021 ◽  
Vol 137 ◽  
pp. 106861
Author(s):  
Deepa Joshi ◽  
Ankit Butola ◽  
Sheetal Raosaheb Kanade ◽  
Dilip K. Prasad ◽  
S.V. Amitha Mithra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document