Multicarrier Constant Envelope Composite Signal

Author(s):  
Zheng Yao ◽  
Mingquan Lu
2015 ◽  
Vol 68 (4) ◽  
pp. 791-808 ◽  
Author(s):  
Tao Yan ◽  
Zuping Tang ◽  
Jiaolong Wei ◽  
Bo Qu ◽  
Zhihui Zhou

A significant feature of the modernised Global Navigation Satellite System (GNSS) signals is that there are multiple signal components needing to be transmitted on a carrier frequency. How to combine these signal components into a constant envelope composite signal is a challenge. Existing constant envelope modulation techniques have some limitations, and are not effective enough. To solve this problem, we propose a quasi-constant-envelope multiplexing technique in this paper. The proposed method is based on numerical optimisation, and can work in two ways. The corresponding objective functions are provided. To verify the performance of the proposed method, we present three application examples. Results show that the first variation of our method can reach the same combining performance as Phase-Optimised Constant-Envelope Transmission (POCET). In the second variation, the combining efficiency can be pre-set. We can reach higher combining efficiency than POCET, and the envelope of the composite signal becomes quasi-constant. Furthermore, the inter-modulation signals in the final composite signal are adjustable. With the help of the proposed method, we can learn more details of the combining scheme than with POCET.


2018 ◽  
Vol 12 (1) ◽  
pp. 34-40
Author(s):  
Said Elkhaldi ◽  
Naima Amar Touhami ◽  
Mohamed Aghoutane ◽  
Taj-eddin Elhamadi

Introduction:This paper focuses on improving the power amplifier linearity for wireless communications. The use of a single branch of a power amplifier can produce high distortion with low efficiency.Method:In this paper, the Linear Amplification with Nonlinear Components (LINC) technique is used to improve the linearity and efficiency of the power amplifier. The LINC technique is based on converting the envelope modulation signal into two constant envelope phase-modulated baseband signals. After amplification and combining the resulting signals, the required linear output signal is obtained. To validate the proposed approach, LINC technique is used for linearizing an amplifier based on a GaAs MESFET (described by an artificial neural network Model).Conclusion:Good results have been achieved, and an improvement of about 40.80 dBc and 47.50 dBc respectively is obtained for the Δlower C/I and Δupper C/I at 5.25 GHz.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Valentine A. Aalo ◽  
George P. Efthymoglou

The received signal in many wireless communication systems comprises of the sum of waves with random amplitudes and random phases. In general, the composite signal consists of correlated nonidentical Gaussian quadrature components due to the central limit theorem (CLT). However, in the presence of a small number of random waves, the CLT may not always hold and the quadrature components may not be Gaussian distributed. In this paper, we assume that the fading environment is such that the quadrature components follow a correlated bivariate Student-t joint distribution. Then, we derive the envelope distribution of the received signal and obtain new expressions for the exact and high signal-to-noise (SNR) approximate average BER for binary modulations. It also turns out that the derived envelope pdf approaches the Rayleigh and Hoyt distributions as limiting cases. Using the derived envelope pdf, we investigate the effect of correlated nonidentical quadratures on the error rate performance of digital communication systems.


Sign in / Sign up

Export Citation Format

Share Document