Flexural Response of a Plate on Viscoelastic Foundation

Author(s):  
Pavani Murakonda ◽  
Priti Maheshwari
PCI Journal ◽  
2004 ◽  
Vol 49 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Nabil F. Grace ◽  
S. B. Singh ◽  
Mina M. Shinouda ◽  
Sunup S. Mathew

Author(s):  
Ziyan Ouyang ◽  
Qi Guo ◽  
Spencer E. Quiel ◽  
Clay J. Naito

Roadway tunnels often include a reinforced concrete drop ceiling that is hung from the liner to create a plenum that facilitates ventilation and houses utilities. Drop ceiling panels are lightweight compared with the much thicker tunnel liner and can experience significant damage from a fire on the roadway below. This paper examines the flexural response of drop ceiling panels in two representative tunnels to standard fire curves as well as several realistic fires due to vehicular accidents. Standard fire demands as per the Rijkswaterstaat and ASTM E1529 fire curves are uniformly applied to the ceiling panels, and heat exposure contours for typical vehicle fires with heat release rates of 30, 100, and 200 MW are generated from the software CFAST. The finite element analysis software SAFIR is used to evaluate the thermo-mechanical behavior of the ceiling panels when subjected to various thermal demands from the fire below. The analysis results indicate that drop ceiling panels are highly vulnerable to fire-induced damage and potential collapse both during a fire’s active heating phase (from simultaneous loss of capacity and restraint of thermal expansion) and during the subsequent cooling period (from tension that develops when the permanently deformed panel thermally retracts). The potential for fire-induced damage or collapse of the drop ceiling panels can be mitigated by reducing the fire hazard, removing the drop ceiling, or enhancing the fire resistance of the panels via the application of passive protection or structural hardening.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350017 ◽  
Author(s):  
GÜNTHER HÖRMANN ◽  
SANJA KONJIK ◽  
LJUBICA OPARNICA

We study the initial-boundary value problem for an Euler–Bernoulli beam model with discontinuous bending stiffness laying on a viscoelastic foundation and subjected to an axial force and an external load both of Dirac-type. The corresponding model equation is a fourth-order partial differential equation and involves discontinuous and distributional coefficients as well as a distributional right-hand side. Moreover the viscoelastic foundation is of Zener-type and described by a fractional differential equation with respect to time. We show how functional analytic methods for abstract variational problems can be applied in combination with regularization techniques to prove existence and uniqueness of generalized solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. A. Khawaja ◽  
T. A. Bertelsen ◽  
R. Andreassen ◽  
M. Moatamedi

The paper gives the study of the response of carbon fiber reinforced polymers (CRFP) quasi-isotropic shell structures under the influence of dynamic loading. The quasi-isotropic CRFP shell specimens are fabricated using Multipreg E720 laminates. These laminates are laid in such a way that shell structure has equal strength and mechanical properties in the two-dimensional (2D) plane and hence can be regarded as quasi-isotropic. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS) for both tensile and flexural response of CRFP. Results obtained from experiments are compared with numerical simulations using ANSYS Multiphysics 14.0 finite element method (FEM) package. The numerical simulation and experimental results are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document